(COMPUKIT UKI01
NEW MONITOR

BY ROGER CUTHBERT March 1980

PLEASE NOTE:—

The New Monitor is supplied with all COMPUKIT
UK101 purchases.

References to the old monitor in the COMPUKIT
UK101 manual must be ignored.

The New Monitor technical overview is printed
betow.

Insert ROM into socket observing correct polarity. Apply power and press reset.

OPERATION

Some movement of subroutines has been inevitable in designing the new monitor but if
the vectors have been used to enter the five main subroutines listed below then no
problems will arise.

) INDIRECT JUMP IN. VECTOR REF.
INPUT ROUTINE $FFEB JMP (80218)
QUTPUT ROUTINE $FFEE JMP ($021A)
CTRL C ROUTINE $FFF1 JMP ($021C)
LOAD ROUTINE $FFF4 JMP ($021E)
SAVE ROUTINE $FFF7 JMP ($0220)

8mall changes - Input ASCII character from tape now in $FE6D and DISC bootstrap has
been removed.

CURSOR - In all modes except edit there is a choice of steady or flashing cursor. In edit
mode for BASIC only the cursor will always flash and at.a rate that is faster than when
flaghing in non edit modes. This allows identification of being in editor.

The default mode is flashing cursor, this is always set up when reset is used but if you
wish for a steady cursor then place a non zero value in $020F {decimal 527) eg. POKE 527
with 1

NOTE! - When using flashing cursor then a key value is entered as the key is lifted and
S0 auto-repeat is not available. However when using steady cursor the key is entered on
pressing the key and if held will auto-repeat.

STORING OF DATA ON TAPE - Sending of DATA

PRINT CHR$(2);P$ - for strings
PRINT CHR$(2);X - for variables

Qn execution of either of the above lines the data is sent out to the tape as well as the
scrgen. The CHR$(2) is a signal to the output routine to send all following until the next
RETURN out to the tape. But the CHR$(2) will only work if it is the first print character of a
ling ie. any PRINT statement that preceded this one must NOT have a comma or a semi-
colon. In addition the string or variable must NOT be terminated with a comma or semi-
colon but the CHR$(2) MUST always have a semi-co.on. These ruies also apply to the
retrieval of data.

Retrieval of DATA

PRINT CHR$(1): INPUT P$ - To retrieve a string
PRINT CHRS$(1): INPUT X - To retrieve a variable

The comments above about comma's and semi-colons are the same for this retrieval but
note the colon before the INPUT ~
It i8 possible of course to use two lines eg.

::Nﬂgj{r S’;‘Bu” }the above is neater

Remember it is not possible to retrieve data that does not exist and the routine would
stay in a continuous search. Hf you try to input a string into a variable the BASIC will print
error. However a variable can always be input as a string.

To avoid this, start any data storage with a string that provides information about the
stored data including its length if known. If not then use an end marker.
eg. PRINT CHR$(2); “END"
Then to retrieve we seek the end.
PRINT CHR$(1): INPUT P$
IF P$="END"” THEN ...

Therefore always retrieve in the same order as sent and use some method of data
identification with something to tell when all data is in. You will need something to signal
tape on or off.

eg. INPUT “Type ‘GO’ when tape running'’.Z$
PRINT CHR$(2);P$

No action is needed on Z$ unless you wish to add an exit in case data is not to be sent
after all.

EDITOR

This is only available when using BASIC and is for amending lines of program and only
one at a time. To enter the editor type CTRL ‘E' and EDIT will print on the screen. It is now
walting for a line number. If however you press only RETURN then the cursor moves to the
next line and editor is not entered. If you type a non-decimal character it will exit
immediatly but if you type a line number then that line will be listed and the cursor will be
seen to flash faster.

N.B. if you type a line number that is not in the program then editor will be entered but
only blank spaces appear. To exit press RETURN.
When in EDITOR -
You may move the cursor at will to edit;
UPW CTRL 'K’

LEFT ... CTRL ‘H’

To ERASE place the cursor over the character and press RUBOUT.
To INSERT between two characters place the cursor over the right hand of the two between
which the insertion is to be made and type.
TO ENTER the amended line the cursor must sit somewhere in the line and press RETURN.
This line will now replace the old one of the same line number so note if you alter the line

number it will replace the line of that number or become a new line if no such line was
present. The extracted one will then be unchanged.

CLEAR SCREEN
This may be done directly from the keyboard with CTRL 'L’ and is blind to any routine
ieFeking input. From program PRINT CHR$(12); - the semi colon is to stop the automatic C/R
IF.

CURSOR MOVEMENT
These can only be used from program.

PRINT CHRS$(11);

DOWN PRINT CHR$(10); - same as line feed
BACK SPACE PRINT CHR$(8);

RIGHT PRINT CHR$(9);

STARTLINE PRINT CHR$(13); - same as carriage return

NOTE a semi colon must always be used to stop the carriage return line feed that BASIC
will send if not there.
The above can be put into strings.
eg. CL$ = CHR$(12)
Then to clear screen PRINT CLS$;
or to place the cursor top left with out clearing the screen some times called home cursor;
HM$ = CHR(13): FOR J =1 TO 15:HM$=HM$ + CHR$(11):NEXT
Now to home cursor PRINT HM§;
N.B. The characters are counted as printed characters by Basic and can upset the correct
position if used when TAB is involved. On these occasions it will be better to calculate
spaces and use SPC.

STACK

All stack initialisation has been set to $FF to use the full stack.
INTERRUPT

The vectors have been changed to take them out of the stack area but compatability is
maintained as RESET places jumps in the new locations back to the old settings. This
makes old routines compatible but allows the chance to write new programs that do not
conflict with the stack.
NMI $0222
IRQ $0225
More notes on data saving
The format is as follows;
/02/....string or variable../03/CR/..10nulls../LF/

The marks 02 and 03 are used by the routine to identify start and finish of a line.

The CR nulls LF serve two purposes;

1. They provide a break between data and allow time for some processing but take care
on the amount.

2. As the tape is read then the CR and LF are already there as it goes to the screen.

N.B. When forming strings for saving remember that on retrieval BASIC will ignore any
ASCII value less than eleven.

PAGE 2 STORE ALLOCATION

ADDRESS

HEX - DECIMAL - CONTENTS

$0200 512 Temporary holding

$0201 513 BYTE from under the cursor

$0202 514 Temporary hold for A during screen print
$0203 515 LOAD flag

$0204 516 Unused

$0205 517 SAVE flag

$0206 518 CRT baud rate

$0207 519 CURSOR position on a line 0-47

$0208 520 CURSOR row number 0-15

$0209 521 Temporary hold of $0207 in EDITOR
$020A 522 Temporary hold of $0208 in EDITOR
$020B 523 Count of number of characters per line for EDITOR
$020C 524 DATA SAVE flag

$020D 525 DATA INPUT flag

$020E 526 DATA INPUT fla

$020F 527 FLASHING CUR%OR flag - 0 for flash <>0 for steady
$0210 528 FLASH rate

$0211 529 Unused

$0212 530 CONTROL C flag

$0213 531

$0214 532

$0215 533 used by keyboard routine

$0216 534

$0217 535 Unused

$0218 536

$0219 537 INPUT VECTOR

$021A 540

ooin 24} outpuT vECTOR

$021C 542

$021D 543 CONTROL C VECTOR

$021E 544

$021F 545 LOAD VECTOR

$0220 546

$0221 547 } SAVE VECTOR

$0222 548

$0223 549 NMI but reset puts in a JMP $0130
$0224 550

$0225 551

$0226 552 IRQ but reset puts in a JMP $01C0
$0227 553

Subroutine Entries

$FBOB — Editor

$FOE7 — Test for key down. A =0 for no key A O for a key pressed
$F9F2 — Increase cursor position record by one.

$FAQ5 — Decrease cursor position record by one.

$FA13 — Input then check for edit, rubout and clear screen.
$FAS7 — Screen print routine.

$FB22 — Clear screen.

$FB60 — Move display up one line.

$FB8D — Form cursor address in $E3/$E4.

$FBAC — Input routine.

$FBD4 — Output routine.

$FCB1 — Send A to cassette port.

$FDO0 — Keyboard routine.

$FEO0 — Monitor.

$FEO5 — Entry to monitor by-passing stack initialisation.
$FE6D — Input ASCII from port, bit 7 clear; was in $FE80.
$FE93 — Convert ASCII hex to binary result in A =80 if bad.
$FF00 — Reset.

$FF8B — Load flag routine

$FF96 — Save flag routine.

$FF9B — Control C routine.

$FFEB — Indirect input — JSR here to enter via vector.
$FFEE — Indirect output — JSR here to enter via vector.
$FFF1 — Indirect control C — JSR here to enter via vector.
$FFF4 — Indirect load flag — JSR here to enter via vector.
$FFF7 — Indirect save flag — JSR here to enter via vector.

