+« 8K Mierosoft, full feature, BASIC
Filly expandable via on board Sockets
=="|)j 10 8 RAM on board

*ﬂassalle interface {Cuts)

-« YU-with its own dedicated RAM (1K)

+ F{ll ASGII keyboard

+ |JHF modulator on board

* PSU on board-transtormer ineluded in kit

+ ill machine code monitor and /0 ulifties in ROM

+|pDey lower case- graphics and gaming characters

Suppliers

COMPUKIT LTD.
14 Station Road, New Barnet, Herts. EN5 1QW

I — — I

Component Positioning Diagram

COMPONENTS
| NoT PRESENT ON BASIC BORRD

Ae
12 J2 [2 J3 +] gB* eC ¥
) Cc13 R 5
¢ I (5 c® Jad o17[Jots €59 oo oo
R& 70
;«gs RS2 RS ks @\
o VIO
RSB 7 @
¢ " |
C052 ég o1
et L VN A L O-DW
R3 K82
= _‘gm‘a 152 1C51 ICS0 1C49 1 -
&7 q - g (jici| fzcil |jrc | fiic
CLy ")
R%-O el meneeli]l TSl B 7| .: SIS Gl 1S
58 56 O n— : ?—1
XL1 D; :. ‘.: L
& L L3 a o —" o= - Vol
ocwousocuocaaOcnowOCLDOCJQ
IC 1c ey ; @ =g [ic]) [ic] [ic] fic
A 11.% CHAR Lo 39 : @ ‘ =.= 3t [33 324 131
O 14t Ten g o i_':'
P o L D el - -.: ~
o C 7 IC
wg‘:’o/%B k81 1C38 IC3 36 1IC35
cIs[{IC 1C Q 1C Q IC |lc3s||IC 1Cc I1C IC 1C
30 129}) 28 Occo 25 O 24 23 22| ||57 20
Fal o o o O Jan O O
b ’27 w8
000
Q2i1c IC © IC IC IC
O 19 18| °2°L |17 16 15 - i
l w7 Wwé NOT PRESENT ON
~ ~ o A Fal 1Cs8 / BASIC BOALD : .
(P ws9 © XX ’ i : :
R8O © O w9 / : :
IC1¢ IC13 1C12 Icn I1C10 IC9 |
MON BASG BAS 3 BAs2|| ||BAS! S, C 22
= = o 999999
C33 c29 c28 c27 Cc26 K121 R1C ! RARB R R
OHI K74
C25 2 D9
l L +# $ ‘s & / {) x = RUB
{ 1 2 3 4 5 6 Y 8 9 e : — ouTt
Q w £ R T Y u I o] @
p 4 RETURN
CIRL LE L \ + | sHiFT
A [D F G H | K L ; L OCK RES { RES
|
L
ETX] < > ?
SHIFT Zz X C v B N M s Y SHIFT

LR
]

xh

)

0u
¥+,

B4

—
b e o [~ Ay
z
v
-
~
-~

1

I~ OwWw =
]

]
& [}

[~
[l— 4N | >

=
g \a 8l
» el BEm| o

g] -TIOAN D>
o e | -~ L

- WO -
W e <a® -
W hE> @ =y =wn

Ol < o P

€ A M
T ~ Gl TV G —
_ACOL PEI—— »xro
MY Ml C) —oa
N B—<
-g_FPFPFR—_c oo T
bl

@9 < ol N2=Z=00
=T JeN-

N ~d B lOo—<
b L T

o a1 s

CHARACTER SET AVAILABLE

Refe /Y | B =D

© .~/ | D3O we

2327 B |TE’ FREE
CoOmPUKTT
Ferzonal Conputer

Gk Bazic Copyright1979
aF

tKkt1el

INITIAL SYSTEM RESET

Foreword

This manual has been prepared for both the experienced user and the first time buyer.

It is intended to act as an initial introduction to the machine’s usage as well as a reference
manual for the realisation of its full potentialities.

The machine itself has been designed and produced in its present form to fulfil the need for an
inexpensive 8K BASIC system capable of use in two forms. Firstly as a sophisticated one-board
computer capable of solving many problems with no further addition; and secondly, as the centre of
a much larger system with all the expansions of disc and extra memory, as well as almost any
“control” type peripheral it is possible to conceive. Printers, floppy discs all plug in directly, as will
any hardware expansions which the owner may feel able to interface and run for him or herself.

The possibilities for this unique machine are endless, and it is hoped that it will play some part in
bringing true home computing within the range of every family and household.

Special thanks are due to A. Fisher for his extensive work on the Software side of the COMPUKIT,
and to Practical Electronics for permission to use their excellent hardware & software photographic

artwork.

Dr. A.A. BERK

Contents

Introduction 3
Hardware description 4
Components list 8
Construction 9
Component positioning diagram 14
Troubleshooting 19
Initial use of the machine 20
Technical Specifications of BASIC 21
General commands and use of BASIC 22
Cassette use 25
BASIC reference manual: 26
Introduction ‘ 26
Variables: types, range etc 26
Arrays 26
Statements 27
Operators 27
Boolean expressions 27
Operator evaluation order 28
Statement definitions 28
Numeric functions 30
String functions 31
String expressions and operations 31
Input/Output (WAIT statement) 32
Calling machine-code routines (USR function) 32
Graphics 37
Example programs 39
Memory Map 44
BASIC error codes 45
6502 Machine Code & Architecture 46
Circuit diagrams 6,7,14-18,47
Instruction Set & Addressing Modes 48

Price List 1.B.C.

Introduction

The COMPUKIT UK101 has been adapted to satisfy a major need in the computer market. This is
for an inexpensive and powerful system supporting a full BASIC package and with all the expansion,
such as disk and hard printer etc., which the microcomputer industry is able to support.

Qo o

Sa =~ o

The board consists of the following:
Full upper and lower-case ASCII keyboard — software scanned for speed and flexibility.

8K MICROSOFT BASIC.
2K monitor including machine code and floppy disk bootstrap.

Memory mapped VDU with its own 1K of dedicated RAM plus graphics. Line width
selectable from 48 to 16 characters by 16 lines.

Up to 8K RAM on board making a total of 19K of addressable memory on the PCB.
Cassette interface (Kansas city) plus printer interface.

Full power supply — even the transformer is included.

Astec UHF modulator.

Supports all Ohio Scientific expansioh as simple plug-in options including Floppy Disks.

The PCB is of full professional standard, plated-through holes — silk screened component
positioning mask and sufficient mechanical strength to support the keyboard rigidly.

The entire system runs on a single +5v Supply and with 8K RAM, uses 2 - 3 Amps at this
voitage from the on-board power supply.

This manual gives constructional details along with a technical description of the system — full
circuit diagrams are included and are explicit enough for any level of personal hardware
modification. A section on usage of the machine is followed by a reference description of the BASIC
language available on the COMPUKIT — this is in no sense meant to be a primer on the subject and,
for the beginner, it must be read in conjunction with a book on BASIC. A 6502 machine code
instruction listing and some information on the processor is included at the end of this manual and
is intended as a reference work only.

The COMPUKIT UK101 is described in a set of articles, by the Author of this Manual, published in
Practical Electronics starting in the August 1979 edition.

Hardware Description
BINARY COUNTING CHAINS

The clocking requirements for the system are supplied by the crystal oscillator and binary
counting chains. Two gate of IC58 plus X1 form an 8 MHz oscillator buffered by a further gate in IC58
and divided by 8 by 1C29. (IC29 thus has a spare + 8, The (CLK) line feed the ""Dot” clock of the VDU
at 8 MHz. This governs the length of time available for displaying one of the dots of a character of
the TV screen. Given the speed with which the electron beam strobes across the screen and the
“dot” time, the width of a dot may be calculated. 8 MHz gives a dot size sufficiently small to fit about
48 characters across the screen (each 8 dots wide), while of low enough frequency to pass easily
through the UHF modulator and IF stages of a TV set.

The D output of IC29 (at 1 MHz) then feeds the @0in line of the MPU, CO line of the VDU and the
counting chain of 74163’s (or 74161’s) 1C59-61 and 1C30. The constraints on the counting chain are
that it must produce ripple-count outputs for C1-C6 in between line-sync pulses separated by 64 us
— note: 26 = maximum of 64 characters per line. There must be three outputs (C8 - C10) for the row
inputs to the character generator, and a further four outputs (C11 - C14) for the 16 horizontal lines of
characters. The entire picture must then be repeated at 50 times a second with a suitable frame-sync
pulse. The final count output from the bottom of the chain is then inverted and fed to load the chain
elements.

C3 is used to set the BAUD rate for the Cassette and serial interface via a further counter, IC57,
and some decoding logic 1C63 and IC58.
NB: R82 is a Common pull-up resistor for several devices.

VDU
The block diagram, fig 1, shows the basic parts of the VDU and the circuit diagram gives the

details referred to below.

The VDURAM holds a screen full of characters (1024 in all). Through IC53-IC55, the RAM address
lines, VAO - VA9, are either fed from the counter chain or the MPU Address Bus — depending upon
the state of VA (VDU Access). When VAis at a’1’, C1-C6 and C11-C14 are connected through to VAO
- VA9, and when VA is at a '0’, the MPU busses have direct Read/Write access to the VDURAM.
Reading or writing of data is controlled by the bidirectional buffers 1C24 and IC25 which also
disconnect the VDURAM from the MPU Data Bus when the counter chain is supplying addresses to
VAO - VA9. Thus when VA is in the Zero state, the VDURAM acts just like any other block of
Read/Write memory, here based at location address D000 (Hex). This allows the screen to be read or
written to during a program. With VA at a '1’, the 10 VDU RAM addresses are derived from the
counters sequentially. The RAM is in the READ condition when not selected by the MPU, and the
contents of the RAM locations are sent to the character generator for interpretation into bit patterns
forming characters on the screen.

Each character in the Character Generator, IC41, is stored as an 8x8 matrix of white and black
dots. White is stored as a ‘One’, The characters appear on the outputs of IC41 (DO - D7) one row at a
time, see fig 2. Here an ‘E’ is being displayed on one of the 16 lines of text on the TV screen. C8, C9
and C10 from the counter chain determine which row (RO - R7) is being output at any time. The
sequence of events is as follows. C1-C6, C11-C14 contain an address of a location in VDURAM and
hence of some character on the screen. The contents of this location (8 bits in parallel) are fed to
1C41 which then outputs (in parallel) the 1’s and 0’s (white and black dots) of one row of the character
along D7 - DO. Here, five 1's and three 0’s are output to form the top row of the 'E’. IC42 serialises this
parallel information at 8 MHz, and sends it out in a stream to IC70 to be mixed with TV sync.
information etc. and displayed along a TV line as the electron beam strobes across the TV screen.

This takes 1us and each successive 1us sees IC42 loaded with another character-row for the same
treatment — (LD) is fed from CO at 1 MHz via a monostable (half of IC71) to give a short negative
going pulse, and (CLK) is at 8 MHz. This is the "Dot” clock — so named as each cycle displays one
of the 8 dots of a character on the screen. After the top row of the "E” has been displayed, the top
row of the next character on that line must be fetched. Again, C8, C9, C10 will not change but C1-C6
will, hence selecting the next VDURAM location, and so on until C1- C6 have displayed one row of 64
characters. Some of these are lost at the ends of the line as the Dot clock is only at 8 MHz. When C1
-C6 have finished rippling through, C7 changes and the whole is repeated. C6 synchronises the TV
line (at 64us intervals) and thus starts a new line via IC65 on its downward edge. C7 is not used in the
process and thus C1 - C6 must count through twice before C8, 9, 10 increment to a new row of the
character, this causes each row of dots to occupy two TV lines as shown in Fig 2.

As C8, 9, 10 increment, the complete set of 16 TV lines builds up a row of text. The next step is to
increment C11 - C14 to address the next row of characters stored in the VDURAM. The complete
frame of 256 TV lines is built up as C1 - C14 count through. Normally, in TV transmissions, another
frame slightly different from this, is interlaced in the space between the lines of the first frame. Also,
each half frame is composed of more lines. Here, C15, via IC71, provides a frame-sync. pulse to the
TV and the above process repeats exactly — each line occupying its previous position. The
resolution thus obtained is not as high as a normal TV picture, but is more than adequate for 16 lines
of VDU information.

The frame-sync. is delayed by half of IC65 to allow the TV picture to be moved up the screen and
hence prevent the bottom left character from being lost. This is the most important slot on the
screen and must be displayed clearly. The value of the components R33 and C8 may be adjusted to
ensure its readability on any TV.

About 48 characters are able to be displayed on a normal TV, and hence some characters are lost
from the edges of the screen. A few are missing from the start of the line and the rest from the end.
The software of the COMPUKIT uses just the 48 slots to prevent ioss of information — the others are
available to the user, however, and may be forced into display by adjusting a TV or monitor to
‘underscan’. The RAM locations are still perfectly valid and may be used as normal.

A note about Graphics should be made at this point. Since an 8x8 matrix of dots is used for
characters in general and only a 7x5 matrix is used for the ASCII characters, spaces of varying sizes
are left between text characters both horizontally and vertically. However, the COMPUKIT’s
character generator is very rich in blocks, lines and special patterns which use the full 8x8 array of
dots. By this means, adjacent graphic characters may be chosen to run into each other, and graphs,
large patterns, block diagrams etc may all be constructed from basic components. Also, some extra
characters are included such as £, m, etc. for a very full variety of uses.

ADDRESS DECODING AND MEMORY

Address decoding is performed via 74138’s and 74139’s with some extra gating. The address map
defines the operation of this block and it will not be described in full electrical detail — a TTL data
book will provide all the information necessary to understand how this block works. RSO - RS7 are
selects for the RAM (8 blocks of 1K, each comprising two 2114’s). BSO - BS3 select the BASIC ROMs
and MCS selects the monitor ROM. ACS selects the ACIA for the cassette. RKB and WKB are Read
and Write selects for the keyboard and WVE and RVE for the VDU.

The RAMs are addressed so that IC31 and |C45 are at the lowest addresses and hence form the-
"first” 1K block of RAM (based at 0000). Addresses increase from right to left in pairs — the 2114s
being arranged as 1K by four bits—IC32 and 1C46 are next and so on. The ROMs are arrangedto allow
other options. When the 64K bit ROM is available, the four BASIC ROMs may occupy one package —
A11 & A12 will be needed and an address decoded line to select it. This already exists on the
COMPUKIT — BS supplying the necessary address decoding. W1, W2 and W4 are pads next to the
ROMs bringing these lines in. When this option is available, there will be three spaces free for ROMs
or EPROMSs of the user’s choice. The COMPUKIT even allows for active high or low BS line via U18.

The Monitor ROM also has some flexibility in packaging and this is catered for as shown.

PROCESSOR AND EXPANSION SOCKET J1

The processor is shown feeding all the Buses and control lines internally as well as externally via
J1, whose data lines are fully buffered by IC6 and IC7. External devices decide the direction of data
flow through these buffers by DD. A lower DD allows to READ from the external bus. A High allows it
to write. This socket allows any external logic to overtake the MPU system via interrupts and can
easily be extended to control anything. External memory may be added via the socket, disc storage,
S100 Bus expansions etc. etc. may all be plugged in directly.

SERIAL AND CASSETTE INTERFACE

The serial interface is controlled by IC14 - the ACIA. This is primarily to drive a cassette interface.
However,; components are provided on-board to allow the ACIA to drive a RS232 interface if required.
This will not be described here but is shown in the diagram.

The ACIA receives its clock from C3 of the counting chain via IC57,1C63 and IC58. Options exist,as
shown, to separate the Tx and Rx clocks. In addition, driving the clock from C2, C1 or CO will
increase the BAUD rate from 300 by a factor of 2, 4 or 8 respectively.

The ACIA’s Tx and Rx data lines are fed to the cassette interface as shown. The transmitter uses a
7476 (IC64) to present a high or low tone to the recorder as a "1 or 0" is to be recorded — this
follows the usual Kansas City recording format.

Receiving depends upon the time-constant of a monostable. IC66 and IC62 are used to convert the
sine-wave input, from cassette, to square-wave suitable for the monostable IC69 and the clock input
of a D-type flip-flop, IC63. While the tone is high, the 74123’s time-constant is set such that the
Q-output has no time to reset to zero before the next positive edge at B forces it high again. D and
CLR of 1C63 thus remain high, as Q does, and Rx DATA presents a constant ’1”’. When a low tone
arrives, the cycles arriving at B are long enough to allow Q to reset, after its positive-going timing
pulse, before B suffers a further positive-going edge forcing Q high again. This gives the timing
diagram shown in fig 3 for 1C63.

The leading edge of D is slowed by R62 and C55. The zero on CLR now sets Q to zero and, because
D’s rising edge is slowed down, IC63 sees a zero on D when the clock goes high thus preserving the
zero on Q and hence the circuit decodes a constant zero for as long as the low tone continues.

This sort of circuit is quite reliable at 300 BAUD and any instability will be due either to a large
variation in tape speed, or to the value of R53 and C11 having been incorrectly chosen thus allowing
the negative-going edge on D to arrive too soon.

CLOCK

8 MHz

ROW ADDRESSES FOR CHARAGTER BENERATOR

240 VOLTS 50 HZ =i

PULSE —SHAPING
& DELAY
MONOSTABLES

CLOCKS-

PSU

Ptso

b+ 5V (@) 3 AMPS
m<zomz_x N UHE
LEVEL CHANGE MODULATOR

CHARACTER
GENERATOR

1 |

XTAL CLOCK
———"DOT "cLOCK
-8
f———> MPU CLOCK ETC
1 MHz
» CLOCK FOR ACIA
BINARY
COUNTERS
(SYSTEM
CLOCKS)
ROM

CONTROL

6502
MPU

RAM

ADDRESS
DECODING

ADDRESS
SWITCHES

vyou
RAM

TRI-STATE

GENERAL
SERIAL

& RS232

INTERFACE

CASSETTE
INTERFACE

p——e- TV AERIAL SOCKET

KEYBOARD
INTERFACE

ADDRESS

BUFFERS %

BLOCK DIAGRAM

DECODING

ADDRESS
DECODING

KEYBOARD

BUFFERS

CONTROL =

EXPANSION
SOCKET

DO

D2 D1

D6 D5 D4 D3

D7

Fig.2

CLOCK
D

CLR

Fig.3

Component List (COMPUKIT UK101

IC’s CAPACITORS
(U numbers and IC numbers are identical). Cé6 150pF (Ceramic)
'C4:51 74LS125 C8, C11 100nF (Mylar)
IC8,7 8728 (Only used for c9 68pF (Ceramic)
expansion) C10,C13 10nF (Mylar)
IC8 6502 C48 fAZO|nF) (Ceramic or
IC9 - 1C12 BASIC ROMs (nos 1 -4 ylar
respectively) (C57 27pF (Ceramic)
IC13 MONITOR ROM C58 47uF (Electrolytic)
IC14 6850 C59 3300uF (Electrolytic)
IC15 7402 C60 22pF (Ceramic)
IC16,18,21,62 7404 All others (31 in all) are 0.1uF
IC17 7415139 Ceramic Capacitors for bypassing.
IC19, 56 74L.S20
1C20,22,23 7415138
1C24,25 8728
1C28,65,69 74LS123
IC29 7493 DIODES .
IC30,59-61 74163 (or 74161) D1 - D10 IN914 (or equivalent)
IC31-40,/C45-52 2114 D13 IN4001 (or similar)
IC41 Character Generator D17, 18 3Amp Rectifier diodes.
IC42 74165
1C53-55 74L.S157
IC57 74163
1058 oy TRANSISTORS
IC64 7476 Q1 any small signal PNP
IC66 CA3130 transistor.
1IC70 7403
REG (ICl) 3 Amps +5 Volts
N.B.: LS or non-LS may be supplied MISCELLANEOUS
for the above, except for IC’s: F1 3 Amp fuse plus holder
IC17, 20, 22, 23, 2, 3. XLA1 8 MHz crystal
UHF Modulator — 8MHz bandwidth version of
Astec modulator.
Double-sided plated through PCB with solder
mask and component legend.
SOCKETS (All DIL) Set of keyboard switches and key-tops
2 off 40-pin Regulator heat-sink plus nuts and bolts for
7 off 24-pin fixing.
18 off 18-pin Transformer: 240v 50Hz primary, 8-0-8 volt 3
21 off 16-pin Amp secondary.
13 off 14-pin
1 off 8-pin
RESISTORS

(All 5% Vs Watt carbon film)
R1-R8,10-12,68,

80,81 4K7
R33,37,55,63,64 10K
R34,50 15K
R36,35,60,61,65 470R
R51, 9 270R
R52,54,59,72,82 1K
R53 22K
R56 100K
R58 560R
R62 100R
R67 27K

R74 390R

Construction

The first part of this section is for reference by beginners. The later part describes the construction
itself.

Resistor colour codes:

GOLD Most resistors are mounted on end:

(5% V4 Watt carbon film)

— R _(
BAND 1 T BAND 3
BAND 2

RESISTOR VALUE BAND 1 BAND 2 BAND 3
R1-R8,R10-R12, 4K7 YELLOW PURPLE RED
R68,R80, R81

R34, 50 15K BROWN GREEN ORANGE
R58 560R GREEN BLUE BROWN
R36,R60,R61, 470R YELLOW PURPLE BROWN
R65,35

R37,R55,R63, 10K BROWN BLACK ORANGE
R64,R33

R51,R9 270R RED VIOLET BROWN
R52,R54,R59, 1K BROWN BLACK RED
R72,R82

R53 22K RED RED ORANGE
R56 100K BROWN BLACK YELLOW
R62 100R BROWN BLACK BROWN
R67 27K RED PURPLE ORANGE
R74 390 ORANGE WHITE BROWN
Capacitors:

Electrolytic capacitors are polarised by a + sign at one end

T

Mylar capacitors are green with the following markings:

5

CAPACITOR VALUE MARKING &
C7, C12, C55 nF 102K
.C10, C13 10nF 103K
C8, C11 100nF 104K
C48 220nF 224K

N.B. C48 may be supplied in black ceramic marked: 220nS

Two types of ceramic capacitor are used with markings as follows:

Low Values:
CAPACITOR VALUE MARKING
COLOURED
BAND ~* 6 150pF BLACK BAND GREY

BODY

(01°) 68pF PURPLE BAND N
68P MARKED ON BODY

C57 27pF PURPLE BAND
27P MARKED ON BODY

C60 22pF ORANGE: 22K

All Others: N
lg?vi

These are 100nF bypassing capacitors to limit the transmission of unwanted high frequency spikes
along the power lines. These should be assembled into position last, and simply allowed to occupy
any unused capacitor positions marked on the component overlay. They are not critical and one or
two missed will not affect the system too greatly.

Diodes:
The component positioning diagram has every diode marked by the symbol:

4

The component itself has a bar around its body as shown below
- |

This bar corresponds to that in the diode symbol and the wire at that end of the diode must be
soldered into the correct hole. The + sign on the PCB, on some diodes, also corresponds to the
“bar” end of the diode.

Transistor:
The transistor looks like:

from the top, and there is a corresponding pattern on the PCB to indicate which way round the
transistor must be fitted.

Integrated circuits:
All integrated circuits have indications on their upper surface to ensure that they are fitted
correctly.

PLAN VIEW END VIEW

— —

—a —t pusan

- = = PINS SPLAYED PINS

- o - O_. ouT STRAIGHT
cuT PIN 1 MARKER

ouT

Integrated circuits must be fitted with Pin One nearest to the keyboard — except for IC 41, the
Character Generator, which is fitted with its Pin One towards IC 39 and IC 40 (i.e. to the right).

The pins of the IC’s will be splayed out in most cases, these should be carefully straightened as
shown above before any attempt is made to insert them into a socket.

IC numbers appear as U numbers on some diagrams.

The numbers printed on the surface of the devices may vary considerably. The numbers given on
the component position diagram will be found somewhere on the upper surface of the device
perhaps with a set of prefix or subscript letters. In some cases where an LS device has been
specified the non-LS equivalent may be supplied. For instance, IC 19 is specified as a 74LS20 — the
7420 may be present in the kit instead.

The only critical IC's found are 1C2, IC3 which will be supplied in the LS version.

Keyboard switches:

VIEW FROM TOP

PLASTIC
LOCATING (¥
PEGS \ 5
+ O
PINS
o o

Note that the pins are offset to the right when the switch is viewed from the top. These
components should be inserted and soldered with great care.

N.B. The SHIFT-LOCK position is occupied by a switch which remains down when pressed once and
returns when pressed again.

IC sockets:
14-pin and 16-pin sockets look very similar — make sure the right sized socket is used for each IC,
by counting the number of pins on the pad before selecting a socket.

Fuse Holder:
This comes in two parts — each should be soldered in as shown and the fuse pushed into place.

R R
-
(NN y
Regulator and heat sink:

Assemble regulator to heat sink and bolt onto PCB. Solder pins of regulator beneath board.

)

@)

®

A certain amount of the following will be considered unnecessary by the experienced, while some
points are very important — the owner is advised to read through this section at least once!

You will need a good pair of wire cutters, a small screw-driver and a soldering iron of around 15 - 20
Watts with a narrow bit. The bit should ideally be new — make sure you coat the end with solder as it
very first warms up or a patina of corrosion will immediately form making soldering impossible.
Also, iron-clad bits must not be filed to clean them or the iron protection is lost and they corrode very
fast. The thinnest resin-cored solder should be used. Do not run too much solder into the joints as
the board is plated through and thickly tinned to provide some of its own solder for pins etc. pushed
through the holes.

Never try to drill any of the PCB holes out as this will destroy the plating-through and prevent
tracks on the top of the board from connecting with those underneath. All solder connections are
made to the bottom of the board and no IC pins must remain unsoldered even if they appear to go
nowhere — the connections to these pins may well run on the top surface of the board and down
through the pin hole to the solder pad below. The board should be protected at all times from
excessive abrasion and flexion and should be handled as little as possible — and then only with
clean hands.

Following the component legend very carefully, the most efficient sequence of construction is to
start with the IC sockets. Locate and push their pins carefully through the holes, taking extreme care
to prevent the pins from being bent under the socket — if this happens, the pins will usually break as
they are quite brittle. The socket must be pressed very firmiy against the PCB while two pins are
soldered down to keep it in place.

Sockets are not supplied for the following positions:
IC67, 1C68. Be careful not to use any in these places until the others are soldered in.

All IC’s are fitted with pin 1 towards the keyboard except for IC41 (Character Generator) whose pin
1is towards the RAM block. Sockets are normally polarised in some way and even though IC’s will fit
in any way round, it is a good plan to put the sockets in correctly as a reminder for the future. Do not
insert the IC’s yet.

The best operation to perform next is the insertion of the discrete components except for the
voltage regulator, UHF modulator and large capacitor which make the board unwieldy. The 100nF
bypass capacitors should be soldered in last of all to prevent their being mixed up with the more

11

12

important components. Each component must be carefully inserted, wires clipped and soldered in
place — most of the resistors stand on end. None of the components will tolerate overheating —
especially the crystal — and great care must be exercised here. It should be remembered that once a
device is soldered in place, its removal is made very difficult by the plating-through in the holes. A
solder sucker is very useful for this eventuality. Sockets are particularly troublesome to remove and
are usually destroyed by this operation.

Ensure electrolytics and diodes are inserted the right way round — the bar on the diode symbol
normally appears on the component as a circle around the cylindrical body of the device.

The next operation is to insert and solder the keyboard switches, preferably from top right to
bottom left. Each switch is labelled on the PCB, and the switch, complete with correct key-top may
be inserted carefully in place. Do not use undue force as the switch is quite delicate until held in
place and correct operation will certainly be impaired if the switch pins are pushed into the thermo-
plastic body by too great a strain or temperature.

The pins must be soldered with the switch pressed firmly against the PCB as any leaning to one
side of the device will certainly cause adjacent keys to foul against each other. All switches except
the one in the SHIFT LOCK position are sprung to return after being pressed — do not make the
mistake of fitting the SHIFT LOCK switch elsewhere. This switch will stay down when pressed once
and return on the second pressing. The SPACE bar is fitted last — after its switch has been soldered
in place. The bar should be pushed in to the switch and the white plastic base located into its holes.
The soldering iron should then be used to carefully heat the projections beneath the board and force
them into mushrooms to hold the bar in place. The spring may need bending slightly if the action is
too soft.

SPACE BAR
ASSEMBLY

Before continuing, it is an excellent idea to check for shorts across the key-switch terminals and
between Data Bus and Address Bus lines at IC8. This could save much time later on.

The regulator — with heat-sink in place — UHF modulator and large electrolytic, may now be
soldered in. Solder flux should then be removed with meths using an old tooth-brush and some rag
and the board fully inspected for solder bridges or broken tracks — a watch-maker’s glass is
invaluable for this task.

The power supply can be checked at this point to ensure it delivers five volts to each of the IC
sockets.

Insertion of the IC’s is a delicate process and pins are very easily bent between the chip and the
socket — this is often quite undetectable and causes hours of fruitless searching for the source of
failures. Pins should be bent straight from their normal splayed out condition and pushed bit by bit,
inspecting carefully, into their sockets. If a pin does become bent, it may be straightened several
times before being permanently damaged as IC pins are very maleable.

A final check of IC orientation should be made. If you are not using the full complement of
memory, the two right most RAM sockets (IC31 & 1C45) must be populated first and so on from right
to left in “vertical” pairs.

Once all seems correct, connect up and switch on. Tune the TV to the computer somewhere
around channel 36 and press both RESET keys simultaneously. D/C/W/M? should appear. Check that
SHIFT LOCK is in the down position and press C.

If this causes MEMORY SIZE? to appear, and pressing RETURN a couple of times gives the start
up message on the screen, then you probably own one of the most advanced computers for its price
ever made — congratulations.

NOTE

U numbers are the same as IC numbers on PCB component legend.

The kit of parts may not conform exactly with the stated values — LS devices may be replaced
with ordinary TTL — IC2 and IC3, however, will be supplied as LS. Capacitor values and resistor
values are normally exact. D1 - D10 are not critical as to type, but the correct type must be used for
D15 (a 1Amp rectifying diode), and the PSU diodes which are large (3Amp) components.

1. On some TV’s “patterning” of the screen may be noticed when the brilliance is too high. This
may be removed by decoupling the UHF modulator in the following way:

Normal Modified

100R

+5v O— +5v +
UHF Modulator ’ 100;JFT UHF Modulator

Gnd Gnd

UHF Modulator UHF Modulator

+
100uF 6v

Ground foil
Video

100R colour code: BROWN BLACK BROWN

2. C 60 should be a 22pF capacitor but if the characters on the screen show a tendency to flicker
and change then it should be increased slightly to 30 or 40pF.

3. We are sure that you will have no trouble in constructing your COMPUKIT, but if you find that the
machine does not work, even after considering the troubleshooting section, do not run the risk of
destroying your board. For £25, COMP COMPONENTS will repair the system and send it back
in perfect working order (postage inc.).

Address

COMP COMPONENTS,

14 STATION ROAD,
NEW BARNET,
HERTS.

If you require advice of a technical nature:
ring MR. DAVID FINE, MILTON KEYNES (0908) 315 335.

4. The 8,0,8 of the transformer connect to B,A,C — labelled at the top of the board.

5. Make sure you insert the BASIC ROMS in their correct positions. BASIC 1 is nearest to the 6502
MPU, then numbers 2,3,4 from right to left followed by the MONITOR ROM and the ACIA
respectively. (Refer to the component positioning diagram on page 5.)

13

8V

50Hz 0
240V

ALL INS1L'S

D@
D1
D2
03
DATA
BUS
D17 UHF MOD
+5v
D4
5V REG. o5
Fsi +5v D6
1c1 —— o >
D18 59 cs8 015 PCB
33008 J7 1NGOOY
4 i 4
ov
_ O 3
11 1C4 12
6] 7es12s s
8 3
11 4]16] 13}
WKB —d -
PSU &
1§ 431913
3
11
Py ICS
7415125
8

223
C5

COLUMN ADDRESS

239
>3

R6

247 251 253 254
c3 c2 c1 cg

191

RS

223

3
QRe
ROW

ADDRESS S

~
< R3

u

~

R2

M

251

R1

253

RO =

CTRL

.
°*

4
4

P

SHIFT

{LEFT)

SHIFT | SHIFT
(RIGHT)] LOCK

y

A=

254

KEYBOARD

DENOTES
SWITCH

14

g3

+5
. 25 Re DATAL
a1k |il.|0W,v R e WS -
RE3 ! Dwm ~
(Ry DATA 1)—4 R« DATA Je, CRE
- 0 dh (R« DATA) RDATAC
3 mes (ReDATA —0 +5 5
85232 €—Wv—¢ Q2 c1s2 R, CLKE—
\N e e ADIMV 3
D6 RS R44l: [rap (CTaK2 A* V (TS
+5V 062 Vel “sz ps] '8 R3ale lee €T3
R N ~N - v
?o»i% 1 P PSRAl
ASYNCHRONOUS I/0 | V68
NN L
& RS232 SYSTEM CLOCKS (recLo—a>2 . * SERIAL DATA
BUFFERS
RS-232 oo

W IR \mJ

Components not present on basic board

-V

except for Q1, R72, R63 — 65

GENERAL SERIAL INTERFACE

DI

_ Je
* Tx DATA

RTS

Components not present on basic board.

15

I1CS XL
y 7416 1N
CLR 2
wf . cx R36 8MHZ R3S
" aabicy 470 416
Ep wl +5v 26
3 I
7 M ospic2 7493
). ac 12 c3 2
11
6 Q0 p— 3
0 B
no_a 10
A D
IC58 7400 CLK
i g
10] 741
8 oy B Lo Locs
Her P
=1 Y oaPiacs N.B.: Connecting CD of 1st stage to all subsequent EPs
L3 PY as 3 reduces enabling delays see Fairchild 9310 data sheet.
H 12
¢ acp—c7 each CD :
8o aoflacs 4
cp 90—
15 |v_ 1us < 1st CD is 1us & stays up as
Ve long as QA-Q Data "1” — i.e. 1 clock time.
IC61 1st 2 stages unaffected by LD — they change to all
1 10 :;.w zeros anyway after terminal count.
CLR CLK
ee) H
ﬂlw. A oapén
L] 8 Q8 Fn—e
e acpi. oy
8o co aofpl-ci2 asil
15
g
R33 R34
IC30 10k ce 15k c7
10] 74163 100n 1000p
il oy
Her w2 .)
=X N aapi-c13 1
4 13 A
— esfp—cu c6 R
15 achi-cis Y] D s
B
< nou e cL
1
V 1C19 3 IC65 1 1C65
7420 74123 74123
+ SV 13 +5V ©
Y SYSTEM CLOCKS '«
KEY:
IC59 — IC61, IC30, IC29 Binary counting chains
1C65, IC71 Monos for TV syncs
IC41 Character Generator
1C42 PISO
1C39, 40 VDU RAM
1C24, 25 VDU Buffers
IC53 - 55 Address switches

MPU
OATA =
BUS

IC4
HAR GEN

o

vDO——1
vo1——
vo2—24
vp3 =2
vDL—N
V05—

Gl

»® O Om

+5v
18 17042
51052 €53]g
A3 00
10
AL o1
02 11
Pos (F!
oy (1
oshs
firy 1
a0 o7pl
AC AY A2

ICL2
74165

o,

1C24
8T28

IC39

vD2
_ 12] 2114

aT28

1C25

1B11ICL0

2114

1C70d
7403

YAQ
p—— VA1
VA2
——VYA]
p——VAL
——VAS
p——VAG
p—VAa7

15 16
_ "
VAS

BINARY COUNTERS AND VDU

PIN12 12

TO AERIAL
SOCKET
UKF
J MODULATC
I1C70c TS5V
7403
wa
333
MmoM_,
15 1] 1C28a
74123
A Th—¢
B _ctL
Nh 3
I1CS¢4
76157
AQ ~—i >h|~..>
Al — p— vao >m||MI 2A 1y
a2 —Y as—Y3a
Al ——e p— VA1)ﬂk LA 2y
c1 =4 cs—3s
6 6
c2 — E—va2 c6—28 3y
€3 = c11—21g
co— 2 _va1 cn—2.e 33
G

+5v

16

5731
— osu
1€21

[T ﬂxamllllllllllll I

|
[T, T
[T, IO

[Ty

[TITIT

SEI1

=~

[TITTITITLT

HHIIIHIIIIEI“

IINRNRRRREEN

TITITTITIT e

B H0SS300Hd

111111111111[[

LF 13IXO0S NOISNVdX3

>>>>>>>>>

*— v
m
AS
o2y
7

[4%e)¢

REEEEARRRRRRNEREENR

0191
lnz

EERERRRRERERENEER

a ~
= Q > |
RESRRRRERENRNREEREE] ..
= ~ E 3= .
(9] = N 3
[@ ° — R
3
=1 1 w [~
& alxlalal= R EFIFFIE PP
s
: MERRRSRRSBMRE \>/
<[8S83R2228(2823 %2285 w7
Bl
5
a
>
5]

S(AVY B S.ANOYH

sav

zlml?ﬂam‘am!n‘
o ol n ol &
a2 Es g

WOY HOLINOW

f
oz ~—
0

[1
zz sv
33 o
T w
7 av
T sy
5 ”v
3 £
3 v
p———— ¥
v av

sSS3daav

Qdizsa

Wou
soLinon [2
€131
:
4

—Y

= 5 > o
wwwwwwww

17

1C18
+SV 7L04
1
1C18 i S TxDATA Re2 +5Y
12 7404 e ul
022l Txoatal® 13N .12 TxDATA AN
01 21 |l q , . ,
20 2 R x DATA
D2 —— PRE PRE 3
22 s RxDATA o, N i o} dELAANA AUX
MPU —] 6 R56
B ; 5 CLK CLK
DATA BUS) p; =& RTS §2me——— b RTS 1 ¥ 1] K Hom_hoox RS> orp
ps —§ IC14 IC64 CLR cLR N7,76 10k
06 —164 6850 o 7476 3 8 C13 mimm > MiC
:: 15) 23 . Tx CLK 8:4 |
14
Ll 1
controL4 £2 3 I PV w3 Z RS
RIW —= CTs @——CTS TRANSMITTER
A0 — 1% L Tx CLK
— X
ADDRESS ATo — A 51 TxCLK F—o— -
DECODING) ACs——4 553 W5
AT —d csp rxakE @— RxCLK
! +5YV RS3
Io. c11
% 10k 100n
+5v R82
_ 1k 1C63
AvAYA 7474 7 5
12 9 wmomN U o2
10 @ IC69
ofer RECEIVER s N5 ah 70123
EP 11 . ¥ e CLR
9 a +5V +5v
-0 cL nH»mmmo " RB2
c3—Hck = .rb%((h
3 1k
L A R83
° p | o IER cio 20K A |
slc ac 7400 e J2 —.I)\/\r L 100
3 6 FROM PIN _o— PRE
Jein oofiids CASSETTE 10n D10 21 i E
2 1C57 (£aR) Pk | 1063
’ C55 mmm 7474
74163 sw CLR
7 7 L

CASSETTE INTERFACE

18

Troubleshooting

The process is best assimilated while the reader’s mind is fresh from the hardware description.
There are several categories of malfunction which may arise, and only one or two of a very definite
nature are able to be mentioned here. The tools necessary for troubleshooting are an oscilloscope
and a continuity tester. The latter may be all that is needed but a ‘scope considerably speeds the
process.

Other useful items include a bottle of methalated spirits and a watch-maker’s glass to clean away
flux and inspect the PCB for obvious solder bridges etc. The continuity tester is also generally used
to detect shorts across tracks as well as to check the correct connection of components through the
system.

The following assumes that you have checked the five volt supply and all the external connections
and that the SHIFT LOCK key is in the down (or locked) position.

If the following procedures are ineffective, the unit should be returned to the suppliers (COMP
COMPONENTS, 14 Station Road, New Barnet, Herts.) who have a standard charge for repair.

(a) UHF Modulator

This is detected by switching on and tuning the TV through the complete range, particularly near
to channel 36, and finding no change throughout the band. A short band of blank screen should be
detected near to channel 36. Check supply at modulator and connections, including ground
connection to metal case. Scope the video input to the modulator — the waveform should be
negative-going pulses 64 us apart with some fast spikes (positive-going) in between. If this is
present, then the extremely rare occurrence of a faulty UHF modulator must be suspected.

(b) No Video Information At Modulator

Scoping through starts at the output of U58 (pin3) to detect the 8MHz clock. Work through the
counter chain including U29 to check on oscillation of counters. If this is absent, the sequential
nature of the chain will allow you to narrow down the point of failure quite closely. The most
common fault is a solder bridge or bent IC pin.

If this cannot be detected by eye, the continuity tester must be used to check that all pins go to
the right place and nowhere else! A chip must be suspected of failure only as the very last resort.
Even then, try a chip from lower down the chain or elsewhere on the board in its place, if possible.

Once the chain is oscillating, failure may then be due to the area of the 74123 monostables U65,
U28, U69 — again check through from the counting chains. HS should be negative-going pulses at
64 us separation (Horizontal sync), and VS at 20mS (Vertical sync). Pin 9 of U42 should be pure video
information in short closely packed spikes.

(c) VDU ok — No Reset

If the two break keys, pressed simultaneously, do not produce D/IC/W/M? on the screen then it is
possible that the 6502, U8, is not receiving its clock (pin 37 at 1MHz) or its RESET (pin 40) — check
both with scope.

The most likely cause, however, is almost always a simple bridge connecting a couple of Data Bus
lines or Address Bus lines together. Check for any shorts between the pins of U8.

All the Data and Address lines should be oscillating and should all be affected by pressing the
two RESET keys. If not, check the relevant lines through from start to finish for shorts and lack of
continuity.

If D/IC/W/M? appears but pressing C has no effect, you have almost certainly forgotten to lock the
SHIFT LOCK in the “down” position — this must be checked every time a fault condition arises. If
this is not the answer, check that none of the keyboard switches are permanently shorted and check
that the C key is working electrically. RO - R7 on the keyboard should be receiving a square-wave
signal.

(d) Cassette Interface Not Receiving

The scope may be used to ensure that a sine-wave is present at the capacitor C10 and a square
wave at pin 10 of U69. The waveforms described for the cassette interface may then be checked
through. The ACIA should be checked for clock information.

(e) Transmitting
Checking this side is confined to looking for a signal at the MIC and AUX outputs and then
working back through the system.

(f) Adjustments to the VDU

A certain amount of adjustment of picture density is possible on R58 if required for contrast.
Adjustment of the time-constant of U71 by the capacitor C48 and resistor R67 will move the picture
up or down.

19

20

Initial use of the machine

NOTE — Check that the SHIFT LOCK key is in the "down” position. This should always form the first
check if the computer seems inoperative at any time.

When the machine is built and thoroughly checked, the power should be applied, shift-lock locked
down and the two RESET keys pressed simultaneously — if all is well, the following will appear in
the lower left hand corner of the screen:

D/C/IWIM?

This is a question requiring the user to reply via the keyboard with one of the four letters
requested.

D is for disc operation and is not covered in this manual. Now press M — this is for the machine
code monitor — six characters will appear near the middle of the screen — four for address and two
for data (both in HEX).

This is explained in a later section and the user should now press the two RESET keys again to
restore D/IC/WIM?

C & W are for COLD START and WARM START respectively and have the following meanings. If a
program has been written and stored and is, say, in the operation of being executed, the user may
RESET at any time. D/IC/WI/M? appears and pressing W (warm start) will revert the machine to its
BASIC function without clearing memory of the current BASIC program. C, (cold start) on the other
hand restarts the computer from the top’’ and should now be pressed by the reader.

The words
MEMORY SIZE?

should have appeared — if not, check shift lock — if there is no success, switch off and check the
PCB very thoroughly — especially around the ROMS. Typing any number after MEMORY SIZE?
defines the number of bytes which may be used by BASIC from the start of RAM. The rest of the RAM
is thus protected from being overwritten, and may be used to store data and machine-code blocks —
accessable by PEEK, POKE, and the USR function defined later. Pressing RETURN, "’defaults’ to the
full memory for BASIC — this is jargon for saying that the computer automatically assumes you
would have typed a number of bytes equal to the total memory available. From now on, all entries
from the keyboard must end with a RETURN — the computer will not look at any information until
you press RETURN — this gives you time to change your mind about things and delete unwanted
entries before the computer acts on them.

The words
TERMINAL WIDTH?

should have appeared now, and you are being asked to supply a number which will decide how far
across the screen information is to be printed before a new line is started.

Pressing RETURN defaults to 48, but not all of these will appear on a normal T.V. screen. Try
typing 46 followed by return, this will fit comfortably on most T.V.’s. At this point, the COMPUKIT
does a complete scan of its RANDOM ACCESS MEMORY to determine how many bytes are free for
writing in BASIC — this memory test can be used to determine whether the memory chips are
working correctly — 3327 bytes should be free in the 4K system and 7423 in the 8K system. The latter
is given by the message

7423 BYTES FREE

followed by

COMPUKIT UK101
Personal Computer

8K Basic Copyright 1979
OK

Well done — you now own a powerful and versatile personal computer. With a little study of
BASIC you will be able to pursuade it to perform almost any activity for which you are able to write
down a logical set of steps.

The "OK" is to tell you that the computer is in BASIC and expects you to start programming. The
"« character is a CURSOR which tells you where on the screen your next keyboard entry will appear
— try it!

Technical Specifications of Basic

VARIABLES

@)

(b)

(c)

Numeric and string variable names:

any number of alphanumeric characters starting with a letter and containing no BASIC words.

Only the first two characters are relevant. String variables end in a $ e.g. Al$. 10’s standard form
is denoted by “E”
e.g. 3.2 x 108 denoted by 3.2 E3 and 6.8 x 104 by 6.8E -4

Range and accuracy
62 digits accuracy for numerics between 10 and 10+3 automatically using 10’s standard
form when required. Strings are from 0 - 255 characters in length.

Arrays
both string and numeric of any dimension and subscript range not causing an overflow.

COMMANDS
CONT, LIST, NEW, NULL, RUN, SAVE, LOAD

STATEMENTS

CLEAR, DATA, DEF FN, DIM, END, FOR...NEXT, GOTO, GOSUB...RETURN,
IF...GOTO, IF..THEN, INPUT, LET, ON...GOTO,
ON...GOSUB, PRINT, READ, REM, RESTORE, STOP, WAIT, POKE |, J.

RELATIONS, OPERATIONS and FUNCTIONS

+,*,/,1,NOT, AND, OR, < ,>,<=,> =,=, AB§(X),

ATN(X), COS(X), EXP(X), FRE(X), INT(X), LOG(X), PEEK(l),
POS(l), RND(X), SGN(X), SIN(X), SPC(l), SQR(X), TAB(l), TAN(X), USR(I).

STRING FUNCTIONS

ASC(X$), CHRS$(I), FRE(X$), LEFT$(X$,1), LEN(XS), MID$(XS$,1,J),
RIGHTS (X$, 1), STR$(X), VAL(X$).

ABBREVIATIONS AND SPECIAL CHARACTERS

(a)
(b)
(©)
(d)
(e)
(f)

@)
(h)

LET and END are optional,

? may replace “PRINT”,

: may be used to separate BASIC statements on the same program line,
SHIFT P (before return) erases current line being typed,

RUB OUTs erase previous character(s),

CONTROL C interrupts program execution and returns to command mode. CONT returns to
program execution,

NEXT may be used without mentioning the stepped variable — even in nesting if the number of
NEXT’s equals the number of FOR’s,

No spaces are necessary.

21

22

General commands and use of BASIC

After the words:
OK

appear, the machine is said to be in the COMMAND MODE. At this point, two types of data may be
entered, always terminated by pressing RETURN :

(i) COMMANDS

(ii) BASIC Statements
These are described below:

N.B.
Spaces are always ignored in Commands and BASIC Statements except in literals and string
arguments.

(i) COMMANDS

Clear This causes all variables (numeric or string) to be set to zero (or null)

List This can be used in several forms as detailed below:

List Causes the whole stored BASIC program to be listed line by line until either the
listing is complete or CONTROL C is pressed.

List n (For any whole number n) will list that line only

List n- will list all lines from n to the end of the program

List -n Will list all lines from the beginning of the program to line n

List n-m Will list from line n to line m
This allows any part of a program to be viewed at will.

NULL n Inserts n null before sending data to serial 1/O devices
RUN Starts program execution from the first line with all variables cleared.
RUN n As above but starts program at line n.
NEW Wipes out current program.
CONT Continues execution of program after Control C, or after a STOP statement
encountered within the program.
LOAD
SAVE Cassette commands dealt with elsewhere.
CONTROL C

This is effected by pressing the "CTRL” key and (with CTRL pressed) typing a ”"C”. It suspends
Computer activity and prints a message to give the line-number at which the break occurs.

The Computer then returns to COMMAND MODE. Many BASIC Statements may also be used as
commands if unaccompanied by a line number — for instance:

GOTO n

would cause the Computer to begin executing from line number n without clearing all the variables.
Similarly, many of the above may be used in programs — thereby causing a program to command
the machine.

(ii) BASIC Statements
There are two modes of use of the BASIC language when using an interpreter, such as that
employed on the COMPUKIT. These will be called:

(a) Immediate Mode
(b) File Mode.

(a) IMMEDIATE MODE

If a BASIC Statement is typed while in the Command mode, it is executed immediately a RETURN
is encountered. It is not filed for later use but is lost after execution. This can be very useful. In this
mode the BASIC language available on the COMPUKIT with its fast powerful floating-point
calculation ability is able to act as a super calculator. For instance, answers to such calculations as:

SIN (0.781)
X =156.7x 13
87 x 104

are found and will be displayed on the screen immediately. In this case, the user should type:

PRINT 15.7*13 1 SIN (0.781)/87E4
after pressing RETURN the answer.
1.09796E — 04

will be displayed considerably more quickly than by the majority of electronic calculators on the
market! In addition, of course, the Computer may be programmed to perform this or any other
calculation many times with different values each time.

The immediate-mode use of the machine allows, for instance, instantaneous indication of
remaining program space by typing:
PRINT FRE (N)

The answer (after RESET on an 8K RAM machine) will be 7420. (The FRE function is described
later).

An important use of this mode is for program debugging. The final states of all the variables are
retained when a program ends or is stopped. These states may be viewed by typing:

PRINT A, B, C etc.

where A, B, C are the variables whose values are required. Quite complex immediate-mode
programming may be written by employing colons to separate the various statements. In order to
write and retain a BASIC program, the File Mode must be employed and this is described next.

(b) FILE MODE

To signify to the Computer that it is to retain a program line for later execution, a line number must
be typed before the line itself. This line number identifies the program line uniquely to the user and
to the program. The line numbers may be looked upon as labels.

The concept of a program line must not be confused with a display line. A VDU display line may

only contain up to 48 characters — a program line may occupy several VDU lines. The Computer '

accepts a maximum of 71 characters on a program line and depending upon the Terminal width set
up after a system reset may occupy up to around four and a half VDU lines (if terminal width is 16).

For instance, the program
10 PRINT "HELLO”
20 X=3.6"4.8
30 PRINT "X";X

contains three program lines and three program statements — the first (labelled 10) Commands the
VDU to display the word "Hello”. The second to calculate a value for X and the third to print it.

The program may be run by pressing RUN (followed by RETURN as always) Try it!

The central point about File Mode is that the program is retained after execution — as are all the
variable values — try typing:

PRINT X (RETURN)
in immediate mode, and then RUN again.

ERROR CODES

If during the execution of a program, the computer encounters a word it does not understand, or if
it is asked to perform an impossible calculation, it may detect an error of a type which it is able to
recognise. If this is so, it can inform the user of the type of error encountered. Some errors are
undetectable and simply produce answers which are wrong or even more bizarre behaviour of an
apparently random nature. If it does recognise a standard error, however, it will print up one of the
standard error codes listed in the table at the end of this manual. Each error code consists of a letter
which reminds the user of the type of error found plus a graphic character which makes that error
coding unique.

This type of self checking activity makes computer programs considerably easier to debug as
some of the work is done by the machine itself. There are pitfalls, nevertheless, and sometimes,
though an error of a particular type has been flagged, it may be the consequence of a much subtler
error elsewhere in the program — only experience can help under these circumstances.

EDITING

The program may be edited by writing further lines or rewriting existing ones.

23

24

For instance, typing the following to add to the last program:
15 PRINT ”"BYE”
will insert the new statement in its ordered position by line-no (i.e. between lines 10 and 20). Try
typing LIST.
Similarly, typing,
) 10 PRINT "THIS”;
followed by RETURN will simply wipe line 10 out altogether, now LIST.
If a mistake is made in typing a character, it may be deleted by pressing the RUB OUT key. If the
RUB OUT key is pressed several times, that number of previous characters is deleted.
Try typing:
PRINT "HELLL (RUB OUT) 0”
The third L will be deleted and the VDU will show:
HELLO
The entire current line being typed may be deleted (before RETURN is pressed only) by pressing

(SHIFT) P which displays an @ sign and places the cursor on the next line to await further
instructions.

8
I
o
w
I
=}
>
-
11 [
(B} o)
o b o :: SI
SEcgEQ N § &
ssdzs= i 23
L1
102+00+000000(1) 1C2)OOE():OOOOOOOO
[1
B
I

EXTERNAL CONNECTIONS

Cassette use

Check that pin 10 of J2 is connected to the earphone output and pin 9 or 7 to auxiliary input or
microphone respectively, and pin 8 and/or 11 to the Earth of the cassette machine. Any ordinary
cassette recorder should be suitable, but some care must be taken in selecting cassette tapes —
the very cheapest are prone to giving continual errors. The best volume control is found by trial and
error for playback, and one should start a little above the middle position and experiment.

Recording may be done by automatic level or manual (if available) — some experimentation will
be necessary for the latter. A machine having a tape counter is of considerable assistance in
accessing cassette-stored information, but not essential.

The following gives a set of steps to be followed for play-back and recording respectively.

PLAYING BACK A PROGRAM

(a) Rewind tape to “leader” or blank area of tape before program starts.
(b) Place computer in (BASIC) Command mode and type NEW (and RETURN).

(c) Type LOAD but do not press RETURN. When RETURN is pressed, control is passed over to the
cassette and any spurious ’noise” encountered will be interpreted as data and loaded to the
computer.

(d) Turn on the recorder to PLAY the tape.
(e) Wait for a second or two — or for the ’leader” to pass through — and press RETURN.

Some noise characters may be printed on the screen — if one of them is a number it may be
interpreted as a line-number and appear’in the final program. After a short time the program
begins to be printed on the screen as if LIST had been typed — but more slowly. This allows its
progress to be watched closely. In particular, if the program begins with REM statements, it can
be positively identified from the screen. When play-back is complete, pressing SPACE and then
RETURN returns to BASIC and the newly loaded program is resident for listing (type LIST and
press RETURN) or running (type RUN and press RETURN) etc.

RECORDING A PROGRAM

This assumes the BASIC program is stored in the Computer ready for storage on cassette.
(a) Rewind tape to "Leader” or a blank noise-free portion of tape,

(b) Type SAVE (and press RETURN),

(c) Type LIST but do not press RETURN.

As soon as RETURN is pressed, the LIST function simply lists the program onto cassette — it is
essential that the process begins only after the cassette machine has been turned on and allowed to
settle down to a constant speed.

(d) Turn cassette on to RECORD and allow "leader’ to pass plus a further 5 seconds — otherwise
wait 10 or 12 seconds then press RETURN.

The program will list on the screen as it is being recorded

(e) When recording is complete, wait a few seconds, turn off tape recorder and type LOAD (and
press RETURN),

Then press SPACE and RETURN.

N.B. Setting TERMINAL WIDTH manually after RESET (instead of pressing RETURN) will upset
cassette recording. To prevent errors, execute the statement:

POKE 15, 72
in immediate mode before saving your program.

Address ’15” is also worth remembering for resetting terminal width at any time without having to
RESET.

25

26

BASIC reference and definitions

Introduction

Any Computer language is used to formalize a logical set of steps into a form suitable for
execution on a machine. The machine’s understanding is normally limited to a Grammar composed
of a few statements and some variables. It is at present inappropriate, for instance, to expect a
Computer to understand a Command to perform a calculation of the Mean of a set of a numbers
unless it has been given a program (a logical set of steps) to explain, in its own language, the minute
details of how to attain the end result.

The calculation must be broken down into "INPUT” steps "CALCULATION” steps and "OUTPUT”
steps.

The following describes the Grammar and structure of the fast and powerful form of BASIC
available to the user of the COMPUKIT UK101. The beginner should read this in conjunction with a
suitable BASIC primer.

VARIABLES AND TYPES

NUMERIC variables may be one or two alphanumeric characters in length — the first must be
alphabetic. Longer variable names will be identified by the first two characters only e.g. HELLO, HE,
HE123XY are all indistuiguishable to the machine. Basic words (such as NEW,SIN etc.) may not be
used in variables nor may non-alphanumeric characters e.g.

LEGAL ILLEGAL

A 1B

B1 B*

B 175 TOP

TQ COSQR3

EGG 18Z

TUESDAY 3 AND 2
TELETYPE 3

check you understand why the right hand column members are all illegal. Clue: look for embedded
BASIC words.

Spaces are irrelevant and the second and third members of the "LEGAL” column are
indistinguishable. If you are worried about the validity of a variable, try giving it a value in immediate
mode, for instance type:

Bl =3
(this type of statement is technically termed an ASSIGNMENT statement).

This will be accepted whereas:
Bl«=3

will not.
If a variable is accepted, try printing it out again. For instance:

1B =7
appears to be accepted but follow it with PRINT 1B and you will see that the answer is far from 7,
then type LIST to see why.

The above applies to STRING variables too, except that each such variable must end with a $ sign.
e.g. Alis a numeric variable and has a floating-point value. A1$is a STRING variable and its "value”
is a string of characters of any type including graphic characters.

Some very powerful string manipulation functions are included in the COMPUKIT BASIC and
these are described later.

RANGE AND ACCURACY

Numeric variables are allowed to take on values between 103 and 10+ (approximately) and have
6%2 figures of accuracy (i.e. 6 figures displayed, and one extra ’guarding”).

Strings may be from 0 to 255 characters in length.
ARRAYS

Arrays are available for both numeric and String variables to any dimension which does not cause
an overflow to be registered — this depends upon the range of each dimension’s subscript. A little
experimentation is worthwhile if Arrays are to be used extensively.

STATEMENTS

The BASIC language is written as a set of statements — several of these may appear on the same
program line (up to a maximum of 71 characters on any such line).

Statements on a program line are separated by ”’:” and spaces may be omitted.

e.g.
10 X=13+14.6

20 PRINT X
may be written as:

10X =13+14.6:PRINTX or even 10X = 13+14.6 : 7X

This format has the advantage of saving memory, space and time while producing program code
which is harder to modify and edit.

BASIC OPERATORS

(@) — this is the usual "minus” sign and may be used for subtraction or negatione.g. A=B-C or
D=-E

(b) + Addition
(c) * Multiplication sign
(d) / Division sign

(e) * Raise to a power (exponentiation) .
e.g. X3is written as Xt 3and ¥ X is written as X ¢ (1/3)

(f) = may be used in assignments : A=3 (or optionally, LET A=23)
B = K+l etc. The equals sign is also used in Boolean relations with values true or false. Its
useisillustrated as follows:

A =3 is a statement whose truth, or otherwise, may cause an action to take place. e.qg. IF A=3
THEN GOTO 30.

This last use of ” =" is similar to the use of the next five relations:

(g) > Greater than

(h) < lessthan

(i) <> or >< not equal to

() < =or = < lessthan or equal

(k) > = or = > greater than or equal

(N AND This Boolean operator combines logical statements, and with the next two may be
used to form complex logic expressions with the value True or False

(m) OR

(n) NOT

BOOLEAN EXPRESSIONS

Boolean (or logical) expressions using the above are given a numerical value by the COMPUKIT’s
BASIC. A true statement is given the value " — 1", a false statement has value Zero.

Thus : K=(A =3 AND A =4) gives K a zero value since the expression (in brackets) set equal to K is
false. Similarly:

K= (A= (A+ A)/2) will give the value —1 or "TRUE”,
this is a numerical value and may be used as such. For instance:

PRINT (A= (A +A)/2) +6
will print the number —6 on the VDU.

In addition :AND,OR,NOT may be used in BIT manipulation mode for Boolean operations of 16 BIT
2’s complement numbers from — 32768 to 32767.

eg.
63 AND 16 =16
-1AND 8 =8
40R2 =6

10 0R 10 =10
NOTO = —1
NOT 1 = —2etc.

27

28

OPERATOR EVALUATION ORDER

Expressions are evaluated with the following Precedence order
BRACKETS first, then (in order):

Mt

(2) negation

(3) */ from left to right

(4) + — from left to right

6) =, <> ,<,>,<=,>= from left to right
(6) NOT

(7) AND

(8) OR

Two separate numbers or variables may not stand next to each other similarly two operators
unless the second is +or—
e.g. () A+ —6is equivalentto A—6and A— +6
(ii) Ax—5= —5+A but A—+5is illegal
(iii) 342 +«7+5/10+2 will be calculated as follows: 3%2=9 first, then
9.7 =63,5/10 = ¥2,%2+2 =1 in that order; then, finally, 63 + 1 giving 64 as the result. To change this
order, brackets must be used.

DEFINITIONS OF BASIC STATEMENTS

In the following:

V and W are numeric variables,

X, Y and Z are numeric expressions which may contain numeric and Boolean operators or functions.
B is a Boolean expression.

| and J are truncated integers,

$ denotes a string variable.

READ ... DATA. DATA statements contain lists of data for READ statements in strict order of use —
strings are included. e.g.:

100 READ V, W$
200 DATA 1, "HELLO”, 2, "BYE”

Each time the READ statement is executed, a pair of data is read into the variables V and W$, in
order, until the data is exhausted. The data types must match up with the READ variables.

RESTORE restores the data pointed to the start of the data list for reuse by a READ statement.

DEF FN This is a user-defined function of one argument used as follows:
DEFFNA(V)=3+V * 2 defines a function FNA(V)
e.g. W=FNA(3) gives W the value 27

The argument may also be a numeric-valued expression.

DIM is used to allocate space for arrays and set all array variables to zero.

e.g. DIM V (12,12,2) allocates a 3 dimensional numeric array with first two subscripts from 0 to 12
and third from 0 to 2; similarly, DIM V$ (12,12,2) aliocates a string array of the same size.

Not dimensioning cause a default to 10 for one and two dimensional arrays.
The same array name may not be used for arrays of different dimensions.

END Terminates program (optional) useful in statements such as IF A=3 THEN END

FORV=XTO Y STEP Z ... NEXT V

This "FOR-loop” executes all program statements down to NEXT V for all the values of V from
V=Xto V=Y in steps of V’s value equal to that of Z. The program statements may include further
"nested” FOR-loops. NEXT V may be abbreviated to NEXT. If two FOR-loops are nested and each
terminates at the same NEXT, this may be written NEXT V,W.

e.g.

10 FOR 1=1TO 10 STEP 2

20 FORJ=2to —3 STEP -0.1

30 PRINT I+J

40 NEXT J, |

Note that the NEXT statement names the variables in the order J, |, i.e. ”inner” variable first.
Line 40 may also be written : 40 NEXT:NEXT

Note also that omitting "STEP Z” in a FOR-loop defaults the step value to 1
The FOR statement uses those values of the expressions X, Y, and Z which are encountered upon

first entering the FOR loop. Thus X, Y, and Z may be used and changed within the FOR loop without
affecting its operation.

GOTO | Forces execution to jump to line I. | may only be a positive number — non integers are
truncated towards zero.

GOSUB L...RETURN

This causes execution of a subroutine starting at line | (a positive number as for GOTO) and
terminating in a RETURN statement which forces execution back to the line following GOSUB |I.
Subroutines may be nested.

IF B THEN P

P is a statement or set of program statements separated by colons which will be executed upon
the expression B’s having a "TRUE” value. Strictly speaking B is a Boolean expression such as
A=3 ANDC=580RT>=Q+*2

However as has been pointed out, this is assigned a numeric value as follows:

If "TRUE” then -1
If "FALSE” then 0.

This B may be any numeric expression and if its value is 0 it will be taken to have the value
"FALSE”. —1is normally taken to be "TRUE”, but here any non zero value for B will have this affect.

e.g.If At 2 THEN PRINT "NON ZERO” will print "NON ZERO"” whenever At 2 is non zero.
Similarly for:

IF B GOTO (line number) and IF B THEN (line number).
ON I GOTO L,M)N etc.

The technical term for this statement is the "Computed GOTO”. The line no. L, M or N etc.
chosen by the GOTO statement, depends upon the value of the (truncated integer) expression |.

If | =1 (after truncation) GOTO L is executed, if | =2 then M is chosen etc.

Negative values of | give an error message, whereas larger vailues of | than the number of members
in the line-number list, will cause the next line after the computed GOTO statement to be executed.

REM — all characters after REM are disregarded by BASIC and this space is available for comments
(REMARKS)

STOP causes execution to cease at that line and print out the line-number. The program may be
restarted by CONT, after variable values have been printed if desired.

PRINT (list)
This causes output to the VDU depending upon the members of the print list as follows:
PRINT 3 causes the number 3 to appear as with any other number in the list.
PRINT X will cause X’s value or contents to be printed where X is any numeric, Boolean or string
variable or expression. e.g.
(a) PRINT A= (A+A)/2
will cause — 1 to appear

(b) PRINT3 2 + 2
will cause 11 to appear

(c) PRINT X$
will cause the contents of the string variable X$ to be printed

(d) PRINT XY will cause the combined (concatenated) contents of X$ and Y$ to be printed.
e.g. Try:

X$ = "WE":Y$ ="LL": PRINT X3Y

in immediate mode.

Messages may be printed literally by using "(termed LITERALS),

e.g.
PRINT "HELLO” will cause HELLO to appear.
Any combination of print list members may be included in a list separated by COMMAS or SEMI-

COLONS. COMMAS cause the members to be printed in columns beginning fourteen spaces apart.
SEMI-COLONS cause printing in adjacent positions.

e.g.
PRINT 3,4;7 will give:
3 47
as output.

If a PRINT list is terminated with a comma or semi-colon, the next print statement will continue
where the last terminated. The cursor (a) always indicates the next PRINT position.

29

30

e.g.

10 PRINT 4,6,

20 GOTO 30

30 GOTO 20

Causes

4 6 .

to be output before the infinite loop is entered.

PRINT with an empty list causes the Cursor to move to the start of a new line.

e.g.
PRINT: PRINT:PRINT
causes three "New Lines”.

The cursor position is called the "Print Head”, and it is that screen position at which the next
PRINT statement will begin its output. SPC (Iy and TAB (I) may also be included in a print list where |
is a positive truncated integer expression. SPC (1) prints | spaces and places the print head | places
ahead of its former position. TAB (I) merely moves the print head | places without overwriting
existing material. POS (I) gives the current position, on the line, of the Print Head.

INPUT list This statement allows the user to input data to a program during its execution. The INPUT
list may be started with a message in literals followed by a semi-colon then a list of variables whose
values are to be input separated by commas. The list may include numeric or string variables. When
an INPUT statement is executed, the display shows any initial message first, followed by a ”?”
symbol. This asks for the first piece of data. If further data is required, these may be typed in
separated by commas on the same line, or by RETURN’s on subsequent lines.

e.g.

10 INPUT ”INPUT A,B,C$,D’";A,B,C$,D will cause:
INPUT A B,C$,D?

to be output.

The reply from the user may be, for instance,
10,15.6,HELLO, — 6E51

or

10

?? 15.6

?? HELLO

??7 —6E51

(the computer prints ?? to ask for further data)

A,B,C$ and D are all assigned values as indicated. Literals may be omitted when presenting string
data in this way unless the data contains commas.

Care should be taken to ensure that the data presented is of the correct type for each of the input
list members.

If too much data is presented, a message saying “EXTRA IGNORED” will appear.

If RETURN is pressed on an empty piece of data, the program is aborted and return is made to the
command mode (this is a useful way of leaving a program whenever the INPUT stage has been
reached).

If the wrong type of data is presented, the machine will ask the user to "RE DO” the INPUT from
the start.

NUMERIC FUNCTIONS

(X is any numeric or Boolean expression)
ABS(X) For X> = 0 ABS (X) =X
For X<0 ABS (X) = - X

INT (X) ROUNDS down to nearest integer

e.g.
INT (8.1) = 8
INT (-3.3) =
RND (X)

gives a random number between 0 and 1.

—4

Each time RND is executed with a non-zero argument, the random number generator advances to
the next number. RND (0) will give the same number each time unless interspersed with a RND
execution having a non-zero argument.

The expression (B — A)« RND (1) + A gives a random number between A and B.

SGN (X)

1f X>0SGN (X) = 1

If X< =0SGN(X) =0

SIN (X), COS(X), TAN(X), ATN(X)

are the usual trig. functions with all angles in radians.

SQR(X) = square root of X.

EXP(X) = e »Xwheree = 2.71828

LOG(X) = log of X to base e

FRE(X) for any X this gives the number of remaining bytes of user work-space for BASIC
programming.

(PRINT FRE (X) is very useful for use in immediate mode to determine the remaining memory space).
TAB (I), SPC () and POS (l) are described in the section on PRINT

PEEK (l) Returns a decimal number equal to the value of the contents of the memory location |,
which is also decimal.

POKE I,J loads memory location

| (decimal) with value J (decimal).
In both of the above two functions,
0<=1<= 65535

0<=J< = 255

otherwise an error is indicated.

STRING FUNCTIONS:

X$ is any STRING EXPRESSION or VARIABLE
ASC (X$) This returns the ASCI! value (in decimal) of the first character in the string
e.g. ASC ("AB’)=65
CHR $ (l) equals the string character having ASCII value I.
e.g. PRINT CHR $ (65)
would give the character A.
LEFT$(X$,l) and RIGHTS$(XS,I)
give a string composed of the left most and right most | characters of string X$ respectively.

MID$(X$,1,J) gives the string-subset of J characters of X$§, starting at the Ith character. If J is
omitted, all characters from Ith to end of string are given.

LEN(X$) Gives length of string in characters.
STR$(X) Converts a numeric expression into the string of characters representing its value.

e.g.

STR$(—-6.8) = "—6.8"

and

STR $ (1.3E29) = "1.3E +29”

VAL(X$) gives the numeric value corresponding to a string of digits. (This is the inverse of STR$)

STRING EXPRESSIONS AND OPERATIONS

Any of the above.functions may act on a X$ composed of those functions and the operator ™" + .

e.g.

X$ = "HE” + "LLO”

gives X$ the value "HELLO”.

+ is the operation of CONCATENATION.
Thus LEFT $ ("HE” + "LLO”, 3) = "HEL”
etc.

Strings may be compared to produce Boolean functions — the ASCII values of their characters
are used from left to right for the comparison.

e.g.

"HELLO” is “greater” than "ABC” because ASC ("H)> ASC(”A”). In this way, a file of string
records can be sorted alphabetically. Strings may also contain Graphic characters, and in this way
complicated screens of varied patterns can be generated. Finally, by using the VAL(X$) and STR$(X)
functions, numeric strings can be converted into numbers, acted upon by the normal rules of
algebra and converted back into strings.

31

32

INPUT/OUTPUT (WAIT Statement)

WAIT |,J,K. This is used to send the computer into a wait state until the memory location |
(decimal) takes on a certain value dependent upon J and K. WAIT takes the contents of location I,
exclusive OR’s it with K AND’s with J and waits until the result is non-zero (omitting K defaults it to
zero). Thus any bit of location | can be considered as providing a flag. This could be used, for
instance, with a medium speed printer and allows fast servicing from BASIC of I/0 devices
connected into the system at specific memory locations. Other examples would be for the control of
industrial equipment directly via BASIC.

CALLING MACHINE CODE ROUTINES

USR(l) This function is used to call machine code routines which may be useful purely due to their
greater speed, or for their ability to service directly (and speedily) /0 devices occupying specific
memory locations.

The USR function is called in BASIC by a statement such as:
X =USR(X)

This causes a jump to a machine code routine either in ROM or RAM. To access USR, the start of
the routine must be poked into the (decimal) addresses 11 (low part in decimal) and 12 (high part in
decimal). Executing X = USR (X) will automatically cause the machine code routine, which must be
terminated with an RTS, to be executed. If the machine code program is to be started in RAM, a
block must be protected against overwriting by BASIC. This is done by pressing the BREAK keys and
answering MEMORY SIZE? with a number less than the total RAM available. This restricts BASIC
to that number of bytes and leaves the remainder, at the "top” of memory, protected. Note that 770
is the minimum number allowed for memory size, but this does not allow space for any BASIC
programs.

Even though only one USR function is provided, use of POKE on addresses 11 and 12, before
each USR call, enables any number of routines to be executed, one at a time, during the running of a
BASIC program. In addition, values stored in RAM locations may be passed back and forth between
BASIC and the machine code programs by using PEEK and POKE.

The following provides an example of the application of USR to clear the screen and print up a
message. Reference must be made to the Machine Code Monitor section later in the manual, as the
routines are stored by the user. The example will work on the basic 4K RAM machine.

Break should be pressed and the answer 1024 given to the question MEMORY SIZE? This restricts
the RAM space as follows (see memory map of machine) (all addresses below are in HEX).

0000 ,
to BASIC WORKSPACE
03FF ETC.

(1023 Decimal)

0400
(1024 Decimal)

PROTECTED FOR
MACHINE CODE
ETC.

to
End of RAM

This quantity of protected RAM is not necessary for the following example, but it illustrates the
point that the user is able to control this aspect as he or she wishes.

The machine Code Monitor may now be used to load the following three blocks of HEXADECIMAL
number pairs starting at the address shown.

STARTING ADDRESS DATA COMMENTS

Hex: 0500 A2 00 BD 00 06 C9 5F FO This program stores a
(Decimal equivalent is 07 9D E5 D1 E8 18 90 F2 message in the VDU RAM

1280) 60 (resident at DO00-D3FF).
+ The message is stored

from 0600 onwards and

terminated by 5F

Hex: 0600 43 4F 4D 50 55 4B 49 54 Any set of ASCII character
(Decimal 1536) 5F or graphic character codes
may be placed here by the
user for display: ending in

5F
Hex: 0700 A9 00 85 E1 A8 A9 DO 85 This routine clears the
(Decimal 1792) E2 A9 20 91 E1 C8 CO 00 VDU screen

DO F9 A6 E2 EO D3 FO 06
E8 86 E2 18 90 ED 60

To return to BASIC, RESET must be pressed. The message D/C/W/M? should be answered with W
to conserve the above program. The following program gives an example of the use of the above.

10 PRINT” TO CLEAR SCREEN TYPE C”
20 PRINT

30 PRINT ”"TO DISPLAY MESSAGE TYPE M”
40 INPUT A$

50 IF A$= ”C” THEN 100

60 IF A$= "M” THEN 200

70 GOTO 40

100 POKE 11,0: POKE 12,7:X = USR(X)

110 GOTO 40

200 POKE 11,0:POKE 12,5:X = USR(X)
210 GOTO 40

To leave the program press RETURN without C or M.

Note that in POKEing the address of the machine code routine into 11 and 12 the Hex address is
split into low and high bytes and then separately converted into decimal and loaded into 11 and 2
respectively.

e.g. if the routine were to start at EA32 (Hex) the following holds.
low part: 32 (Hex) = 50 (decimal)

high part: EA (Hex) = 234 (decimal)

thus POKE 11,50 and POKE 12,234 are used.

To write messages other than that shown above, stored at 0600, the user may either use the
machine code monitor to write in the Hex codes of the symbols to be displayed, ending in 5F; or a
BASIC program may be written to POKE the ASCII values of any characters typed on the keyboard
into that area of memory using the ASC function. Data blocks or machine code programs may aiso
be written ‘directly into the protected RAM space using the POKE, READ and DATA statements.
Remember that to POKE a machine code routine into RAM from BASIC, the 6502 operation codes
must be converted to decimal notation, unless you include a routine in your program to perform the
conversion automatically.

MACHINE CODE MONITOR

The machine code monitor program provides a simple but adequate method of loading and
running machine code routines — including loading from cassette. To prevent their being
overwritten by BASIC, MEMORY SIZE? (After RESET) must be answered with a number restricting
the BASIC’s use of RAM. The number, n, thus typed restricts BASIC according to the following map.

33

34

ADDRESS IN DECIMAL USE
0
Page Zero
255
256
Scratch-pad RAM used by
BASIC and system monitor
768
769
BASIC workspace
n-i
n
protected against
use by BASIC
End of RAM

Itis clear from the above that n must be at least greater than 769. In a 4K machine, the end of RAM
occurs at memory location 4095, 8K finishes at 8191.

After RESET, the machine code monitor is entered by pressing M. The display:
0000 4C
then appears.

The first four characters form the address field, the second two data — all in HEXADECIMAL
notation. Typing any HEX characters at this point will load the address field — the data field is kept
constantly updated as the address changes. Mistakes may be corrected by typing further characters
— these will continue to be loaded into the right hand position and then rotated left as further
entries are made.

The following commands are available:

/ changes to data mode to allow data to be loaded — RETURN then opens the next location,
while still in data mode etc.

changes back to address mode.

G (used after setting up an address with .) This jumps to the address showing on the screen and
begins execution.

L transfers control to cassette — loading 00FB with 00 transfers control back to the keyboard.

After L, the monitor is in data mode and simply accepts all its commands from cassette instead of
the keyboard. Thus the cassette tape must have a series of commands, stored as ASCII codes, to
control the Monitor. To load a program from cassette, it must be stored byte by byte separated
by RETURNS and ending with:

.00FB/00

This loads O0FB with 00 which is the flag to switch the monitor back to accepting commands from
the keyboard. The program can be run from cassette, if desired, by ending with G after setting up the
start of the routine in the address field.

There is no command that enables you to save a machine code program on tape. Shown on the
next page is a small routine that will enable you to do just that:

SOME NOTES ABOUT THE MONITOR

The monitor was written with versatility in mind and if you consult the UK101 memory map you will
see that great use is made of vectors.

A vector is an address that the monitor jumps to when performing various tasks. This address is
held in RAM which means the user may alter these addresses and write his own input/output
routines.

The following are the most important vectors:—
Address
0218-0219 — Contains the address to which the monitor jumps when inputting a character — usually
FFBA
021A-021B — Contains the address to which the monitor jumps when outputting a character —
usually FF69.

COMPUKIT CASSETTE SAVE/HEX MEMORY DUMP
Andy Fisher June 1979

To use, place the start address of code to be saved in 00F7, 00F8 and then the end address in 00F9,
00FA. Turn on the tape recorder and execute.

0222 ORG $0222

0222 A9 OD START LDAIM $0D CARRIAGE RETURN
0224-20 2D BF JSR $BF2D CRT

0227 20 7A FF JSR SFF7A 10 NULLS TO CASSETTE
022A A9 2E LDAIM $2E ”.” ADDRESS MODE
022C 20 75 02 JSR CC

022F A5 F8 LDA $00F8 FROM LOCATION (HIGH)
0231 20 63 02 JSR AOUT

0234 A5 F7 - LDA $00F7 FROM LOCATION (LOW)
0236 20 63 02 JSR AOUT

0239 A9 2F LDAIM $2F ”I” DATA MODE

023B 20 75 02 JSR CC

023E A2 00 LOOP LDXIM $00

0240 A1 F7 LDAIX $00F7 GET BYTE

0242 20 63 02 JSR AOUT OUTPUT

0245 A9 0D LDAIM $0D CARRIAGE RETURN
0247 20 B1 FC JSR $FCB1 CASSETTE OUTPUT
024A A9 20 LDAIM $20 SPACE

024C 20 2D BF JSR $BF2D CRT

024F E6 F7 INC $00F7 INCREMENT FROM ADDRESS
0251 DO 02 BNE BUMP

0253 E6 F8 INC $00F8

0255 38 BUMP SEC CHECK IF DONE

0256 A5 F9 LDA $00F9 TO

0258 E5 F7 SBCZ $00F7 FROM

025A A5 FA LDA SO00FA TO + 1

025C E5 F8 SBCZ $00F8 FROM + 1

025E 10 DE BPL LOOP

0260 4C 43 FE JMP $FEA43 YES, RETURN TO MONITOR
0263 85 FC AOUT STA $00FC USE MONITOR DISPLAY
0265 20 AC FE JSR $FEAC TO UNPACK

0268 AD 64 D1 LDA $D164 HI

026B 20 75 02 JSR CC

026E AD 65 D1 LDA $D165 LO

0271 20 75 02 JSR CC

0274 60 RTS

0275 20 BI FC CC JSR $FCB1 OUTPUT TO CASSETTE
0278 20 2D BF JSR $BF2D AND CRT

027B 60 RTS

Various flags are used to control the operation of the UK101:

The Control-C flag at location 0212 activates the Control-C or break in keys. If this value is non-
zero then the break-in facility in BASIC is inhibited.

The Load flag at location 0203 tells the monitor whether its input comes from the cassette or the
keyboard. A zero value signifies the keyboard.

Experiment with these vectors and flags, once you understand how to use them they will assist
you when programming in machine code.

35

36

USE OF THE CASSETTE PORTS

The cassette interface uses memory-mapped ports located at FO0O0 and FO0O1.

The basic way the software works is to scan the status port at FO00. If the ACIA is ready to
transmit the second bit from the right will be set. If the ACIA is ready to receive the first bit from the
right will be set. Using this information you can write your own cassette /O routines.

e.g. To transmit a character in the accumulator.

PHA ; save the character on the stack
LOOP: LDA $F000 ; controls of status port in A.

LSR A ; rotate right 2 places

LSR A ; to place 2nd bit in carry.

BCC LOOP ; if carry clear loop round.

PLA ; if ready to transmit return char.

STA $F001 ; output char. to cassette.

USING THE POLLED KEYBOARD
* the row and column addresses are shown in the circuit diagram of the keyboard.

The polled keyboard contains a firmware-scanned switch matrix which is outwardly similar to a
standard ASCII keyboard (see diagram in circuit diagrams). The 1/O port for the polled keyboard
resides at memory location DFQO0 (hex) or 57088 (dec).

In operation, the polling routine successively addresses each row of key switches RO - R7.
Between these row scans, the routine checks the columns CO - C7 for closed key switches. If a key
closure is detected, the polling routine supplies the CPU with the ASCII code corresponding to the
face of the key pressed. Each of the rows is addressed in turn, thus all key switches are scanned
rapidly.

The BASIC statements used for programming special keyboard functions are POKE 57088, (row
address) and IF PEEK (57088) = (column address). * After RUN is entered, these statements assume
control of the key board since the normal polling routine is disabled (except where INPUT
statements are encountered). In essence, the POKE statement turns on a row of keys, and the PEEK
statement monitors the columns for a key closure. Upon detection of a closure, the PEEK statement
can then transfer control to subroutines, GOTO statements, etc. This permits the function of each
key to be software-defined for implementation of passwords, gaming controls, etc.

Please note: The Control-C function must be disabled to poll the keyboard by using POKE 530, 1.

To test the machine-code monitor, the message program used to illustrate the use of USR may be
adapted as follows.

Place the monitor in address mode either by pressing RESET followed by M, or by pressing full-
stop if already in the monitor. Enter the characters 0500 followed by / to access data. Type in the
following pairs of digits — each pair separated by pressing RETURN.

A2 00 BD 00 06 C9 SF FO
07 9D E5 D1 E8 18 90 F2
4C 43 FE

This ends with a jump to location FE43 which places the monitor in address mode after the
message has been displayed, thus preventing the clear screen routine in the monitor from erasing
the message immediately after its appearance.

The following pairs of HEX digits are ASCII codes for the characters of the message— the list may
be of any length but must start at 0600 and end with the pair 5F.

Press . and then type 0600 followed by / and the following pairs separated by RETURNS :
43 4F 4D 50 55 4B 49 54 5F
To run the program, type
.0500G
This will display the message for which the ASCII codes are given above and leave the machine

code monitor in address mode for further use. Memory size need not be specified for the above
unless BASIC is to be entered and the above protected against being overwritten.

Graphics

Character-slot graphics are used by the COMPUKIT whereby 255 different graphic characters are
available to fill any given character slot.

To view the available characters, the BASIC function CHR$ may be used as follows.

Typing:

PRINT CHR$ (24)
followed by pressing RETURN causes a £ sign to be printed. Each number between 1 and 255
inclusive, corresponds to a character as 24 does to £. (0 corresponds to a null character).

Two of these numbers correspond to (non-printing) commands for the “Print Head” whose
position is continuously shown by the cursor. Thus:

PRINT CHR$ (10).
causes a line-feed — i.e. the cursor jumps to the next line and the screen scrolls upwards.

PRINT CHR$ (13)
causes a carriage return.

The rest of the numbers correspond to ASCIlI characters, special characters and graphic
characters.

The ASCII characters start at 32 (SPACE) and finish at 127. These are all accessable from the
keyboard — the upper-case set with SHIFT-LOCK down, lower case otherwise.

Some of the characters are inaccessible from the keyboard directly — they must be printed using
CHRS$(l). The general graphic characters are best seen by writing a program to print them on the
screen — this will be given later. Try pressing SHIFT-LOCK into the "up” position; with the CTRL key
pressed, some of the keys will give graphic characters.

The following is a list of special, as distinct from graphic characters, with their corresponding
numbers:

Number Character

0 null

10 line-feed

13 carriage-return
24
32 Space
179
180
211
212
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

x%maﬂqugpf%emg%\ﬂ@

37

38

In order to select a particular graphic character, a list of those available may be displayed on the
screen with corresponding number next to each one. The following program achieves this by
allowing the user to specify which block of characters is to be displayed — there are too many to
appear at once. The instructions for the program are as follows.

The program is loaded and run. The words:

WHICH BLOCK?
appear. Answer with a number between 1 and 4 inclusive followed by a RETURN. The first two
numbers display the graphic characters available, a 3 shows the special characters given above and
4 displays the ASCII set.

To exit the program, just press RETURN instead of a number.

The line numbers chosen for the program put it well above any other program you may be working
on. If the program under development ends with an END then the following program will never be
entered by the command RUN. RUN 10000 will be necessary. This allows the graphic program to
remain in memory as a reference for use as necessary. It will be lost if NEW is typed or if RESET is
pressed followed by C.

THE PROGRAM LISTING

(N.B. Spaces may be omitted and PRINT may be replaced by ?, for speed.)

10000 INPUT "WHICH BLOCK”; B: FL = 0
10010 IFB=1THENS = 1:F = 31:GOTO 10060

10020 IFB =2THENS = 128: F = 219 : GOTO 10070
10030 IFB = 3THEN S = 220: F = 225: GOTO 10060
10040 IFB =4THENS = 32:F = 127 : GOTO 10070
10050 GOTO 10000

10060 FL = -1

10070 FORI =STOF

10080 IFI = 100R I = 13 THEN 10110

10090 PRINT I ; CHR$(l);:H =1 + 3

10100 IF INT(H/7) = H/7 THEN PRINT : IF FL THEN PRINT
10110 NEXT

10120 PRINT

10130 GOTO 10000

When Block 2 is requested, some of the vertically adjacent symbols run into each other — use
CHRS$ in the immediate mode to inspect individual characters, e.g.:

PRINT CHRS$ (161)
reveals that this character fills the entire character slot.

The fact that characters run into each other in this manner allows the user to build up quite
complex graphic patterns as well as graphs and bar-charts etc.

The user may find it useful to store the above program on cassette tape for future reference.

Short BASIC Programs

The following short BASIC programs are provided here to allow you to gain some experience with
your computer through fully debugged programs which are known to be working. These programs in
no way depict the total capability of your computer. They are simple programs which are very short
to facilitate manual entry. Each of the programs can be entered in your computer as listed.
Remember to type NEW before entering each program. This clears out the computer’s workspace.
You can substitute a ? for the word PRINT. The COMPUKIT’s 8K BASIC allows you this particular
shorthand notation wherever the word PRINT occurs. Before you try to write lengthy programs of
your own in BASIC, try modifying or customizing any of these programs to get a good feel for how
BASIC works.

PROGRAM 1: Number Guess

In this program the computer generates random numbers, and you try to guess what the number
is. When you guess the correct number, the computer tells you how many attempts you took to arrive
at the correct number.

10 PRINT I WILL THINK OF A”
15 PRINT "NUMBER BETWEEN 1 AND 100"
20 PRINT "TRY TO GUESS WHAT IT IS”

25 N=20
30 X =INT (RND(56)+99 + 1)
35 PRINT

40 PRINT "WHATS YOUR GUESS”;

50 INPUT G

52 N=N+1

55 PRINT

60 IF G=XTHEN GOTO 110

70 IF G>X THEN GOTO 90 \
80 PRINT "TOO SMALL, TRY AGAIN’;
85 GOTO 50

90 PRINT "TOO LARGE, TRY AGAIN";
100 GOTO 50

110 PRINT "YOU GOT IT IN ”;N;” TRIES™
113 IFN>6 THEN GOTO 120

117 PRINT "VERY GOOD”

120 PRINT
130 PRINT
140 GOTO 10
150 END

PROGRAM 2: Heads-Tails Flipping

This program exercises the RND function of the computer by producing heads and tails. The long-
term average out of many runs of this program should be approximately fifty percent heads, fifty
percent tails.

5 REM HEADSITAILS FLIPPING
10 Y=1
20 CcC=0
30 X=1

40 F=INT (RND(45)+2)
50 IF F=1GOTO 80
60 PRINT "T;

70 GOTO 100

80 C=C+1

90 PRINT "H”;

100 X=X+1

110 IF X< 51 GOTO 40

120 PRINT
130 PRINT C; "HEADS OUT OF 50 FLIPS”
132 PRINT
133 PRINT

135 Y=Y+1
140 IF Y<11 GOTO 20
150 END

39

PROGRAM 3: ESP Test

This is another number-guess program where you are simply guessing heads or tails as the
computer flips a coin. The computer keeps constant tabs on how many right and wrong answers you
have given.

10 REMESP TESTER
15 REMTYPE E TO END

20 H=1

25 W=0

30 T=0

35 C=0

37 E=10

40 F=INT (RND(12)+2)

42 IF F=0THEN A$ = "H”
43 IFF=1THEN A$ = "T”

50 PRINT "HOR T";

60 INPUT X$

70 PRINT

80 IF X$=A$ THEN GOTO 100
83 IF X$="E” THEN GOTO 150
85 W=W+1

87 PRINT "WRONG”

90 GOTO 120

100 C=C+1

110 PRINT “RIGHT”

120 PRINT "W="W;” R =",;C
130 PRINT

140 GOTO 40

150 PRINT "BYE”

160 END

PROGRAM 4: Power Generation

This program generates powers of two up to the mathematical limit of the computer. It
demonstrates the fact that BASIC automatically reverts back to scientific notation (E-format) when
numbers are more than about six digits long up to a maximum of 10 to the 32d power. BASIC can
also handle fractions as small as 10 to the — 32d power. Note the "delay’ statements in line 77 to
slow the VDU output.

5 PRINT

7 PRINT

10 PRINT "POWERS OF TWO”
20 PRINT

30 PRINT "POWER?”, "VALUE”
40 X=0

50 Y=1

60 PRINT X,Y

70 Y=Y+2

75 X=X+1

77 FOR 1 = 1TO 300 : NEXT
80 IF X = 25 THEN 100

90 GOTO 60

100 END

PROGRAM 5: Decimal-Binary Conversion

The following program displays the binary equivalent of any decimal number typed in, up to the
machine’s maximum numerical capability.

50 PRINT

60 PRINT

70 PRINT “DECIMAL TO BINARY CONVERTER”
90 PRINT

93 PRINT

95 PRINT

100 INPUT X

101 IF X< 0 THEN 330

102 IF X> 32767 THEN 330
104 PRINT

105 PRINT “X=";

110 Y = 16384

120 A =INT (X/Y)

130 IF A=0THEN 200

140 PRINT 17,

150 X=X-Y

160 GOTO 300

200 PRINT 70",

300 Y=Y/2

310 IF INT(Y) =0 THEN 320
315 GOTO 120

320 GOTO 90

330 PRINT "NUMBER TOO LARGE”

340 GOTO 90

PROGRAM 6: Prime Number Generation
Try to figure out how this program works.

10 PRINT "PRIME NUMBER GENERATOR”

13 Y=2
15 A=1
177 GOTO 80
18 X=1

20 X=X+1
50 Z=INT(Y/X)

60 IF INT (Z+X)=Y GOTO 85
70 IF XX >Y GOTO 80

75 GOTO 20

80 PRINTAY

82 A=A+1

85 Y=Y+1

90 GOTO 18

100 END

41

PROGRAM 7: Acey-Deucy

This is a longer program that should be fun to play. Once you get this program in and running, it
would be wise to store it on audio cassette for future use.

10 PRINT “ACEY-DUCEY”
12 PRINT "YOU WILL GET 25 HANDS”

13 H=1
15 PRINT
17 T=100

19 PRINT "YOU HAVE $”; T
20 X=INT (7«RND(67) + 6)

21 IF X> 12 THEN GOTO 20
30 Y=INT (X~RND(23) + 1)

31 IF Y> =X THEN GOTO 30
32 IFY=1THENY=2

40 A=X

50 GOSUB 500

60 A=Y

70 GOSUB 500

80 PRINT

100 PRINT "YOUR BET";
110 INPUT B

111 IFB< =T THEN GOTO 120

112 PRINT "YOU DONT HAVE THAT MUCH"
113 GOTO 100

120 Z=INT (13-RND(99) + 2)

121 IF Z>14 THEN GOTO 120

130 A=Z
140 GOSUB 500
150 PRINT

160 IFZ< =Y GOTO 200
170 IFZ> =X GOTO 200
180 PRINT ”"YOU WIN”

181 PRINT
182 PRINT
190 T=B+T

195 GOTO 300

200 PRINT "YOU LOSE™
201 PRINT

202 PRINT

210 T=T-B

220 IFT< =0GOTO 380
300 H=H+1

310 IF H>25 GOTO 400
320 GOTO 19

380 PRINT "YOUR OUT!”

390 STOP
400 PRINT "THAT’S 25 HANDS”
410 STOP

500 IF A<11 THEN GOTO 505

501 IF A>14 THEN PRINT "ERROR’: STOP
502 ON A-10 GOTO 522, 524, 526, 528
505 PRINT A;

510 RETURN

522 PRINT "JACK;

523 RETURN

524 PRINT "QUEEN";

525 RETURN

526 PRINT "KING”;

527 RETURN

528 PRINT "ACE”;

529 RETURN

PROGRAM 8: Multiplication Quiz
This demonstrates the use of the computer as a teaching aid.

10 PRINT "MULTIPLICATION QUIZ”

13 N=0
15 Cc=0
16 1=0

20 X =INT(RND(56)+13)
30 Y=INT(RND(54)13)

40 Z=X»Y

50 PRINT

60 PRINT X; 7+ Y; " ="

70 INPUT W

75 PRINT

80 IF W=Z GOTO 120

90 PRINT "STUPID!”

91 PRINT "THE ANSWER I1S”; Z
100 I=1+1

110 GOTO 140

120 PRINT "YOU ARE RIGHT!”
130 C=C + 1

140 PRINTC;” RIGHT”
150 PRINTI;” WRONG”
160 N=N+1

170 IFN< =9 GOTO 20

180 IFC > =6 GOTO 190

183 PRINT "YOU FLUNKED!"
184 PRINT "PRACTICE!”

185 GOTO 13

190 IF C> =9 GOTO 200

195 PRINT "YOU DID OK”

198 GOTO 210

200 PRINT ”NICE JOB!”

210 PRINT "TRY AGAIN?"

220 INPUT T$

230 IFT$ = "Y” GOTO 13

240 END

PROGRAM 9: Fahrenheit-Celsius and Celsius-Fahrenheit Conversions

10 PRINT "THIS PROGRAM CONVERTS”

20 PRINT "FAHRENHEIT TO CENTIGRADE”

30 PRINT "AND VICE-VERSA"

40 PRINT

41 PRINT "TYPE THE TEMPERATURE TO BE CONVERTED”,
42 PRINT "FOLLOWED BY A COMMA AND F OR C”
43 PRINT "FOR FAHRENHEIT OR CENTIGRADE”
44 PRINT "RESPECTIVELY".

50 C=0

60 F=1

70 INPUT X,Y$

75 IFY>1GOTO 250

80 IF Y$ = "F” THEN 200

90 A =(9+X)/5+ 32

100 PRINT 7 =";A;"F”

110 PRINT

120 GOTO 70

200 A=(5+(X-32)/9

210 PRINT " =";A;"C”

220 PRINT

230 GOTO 70

250 END

44

(COMPUKIT UK101 Memory Map

Page 0 Usage
0000
00FB
00FC
O0FE-O0FF

Page 1
0100-0140
0130
01CO

Page 2
0200
0203
0205
0206
0212
0218
021A
021C
021E
0220
0222-02FA

JMP to warm start in BASIC
cassette/keyboard flag for monitor
data temporary hold for monitor
address temporary hold for monitor

stack
NMI vector—NMI interrupt causes a jump to this point
IRQ vector

cursor position

load flag

save flag

CRT simulator baud rate—varies from 0 = fast to FF = slow
Control-C flag

input vector = FFBA

output vector = FF69

Control C check vector = FF9B
load vector = FF8B

save vector = FF96

unused

Page 3 and up to end of RAM is BASIC workspace

A000-BFFF
DO000-D3FF
DFO00
F000-F001

F800-FFFF

FCO0
FDOO
FEOO

FF0O0

FFFA
FFFC
FFFE

BASIC in ROM

Video refresh memory
Polled keyboard
Cassette port 6850

Monitor EPROM

Floppy bootstrap
Keyboard input routine
Monitor

BASIC 1/O support
NMI vector

RESET vector

IRQ vector

Useful Subroutine entry points

A274
BD11
BF2D
FDOO
FCB1
FEOO
FEOC
FE43
FE80
FE93
FF69

FFO0O0
FF8B
FF96
FF9B
FFBA

warm start for BASIC

cold start for BASIC

CRT simulator — prints char in A register

input char from keyboard, result in A

output 1 byte from A to cassette

entry to monitor, clears screen, resets ACIA

entry to monitor, bypasses stack initialization

entry to address mode of monitor

input ASCII char from cassette, result in A, 7 bit cleared
convert ASCII hex to binary, result in A, =80 if bad

BASIC output to cassette routine, outputs one char to cassette,
displays on screen, outputs 10 nulls if carriage return character
Reset entry point

Load flag routine

Save flag routine

Control-C routine

BASIC input routine

BASIC Error Codes

CODE

DEFINITION

O — c ™ v O 0O O =z
R e e A VAND NN

—

c 4 »n O

Double dimension: variable dimensioned twice.
Remember subscripted variables default to Dim. 10.

Function call error: parameter passed to function out of range.
lllegal direct: INPUT cannot be used in immediate mode.
NEXT without a FOR.

Out of data: more READs than DATA.

Out of memory: program too big or too many nested GOSUBs, FOR NEXT
loops or variables.

Overflow: result of calculation too large for BASIC.

Syntax error: typing mistakes etc.

RETURN without GOSUB.

Undefined statement: attempt to jump to non-existent line-number.
Division by zero.

CONTINUE errors: inappropriate attempt to CONT after BREAK or STOP.
Long string: string longer than 255 characters.

Out of string space: same as O 71

String temporaries: string expression too complex.

Type mismatch: string variable mismatched to numeric variable

Undefined function.

Bounds error. Trying to reference a non-defined array element.

45

6502 Machine Code and Architecture

IMPLIED ACCUM. ABSOLUTE ZERO PAGE IMMEDIATE ABS. X ABS Y (IND. X} (IND)Y 2. PAGE, X RELATIVE INDIRECT Z PAGE. Y PROCESSOR
. STATUS CODES
MNEMONIC OP| n ¥ |OP| n oPl| n ¥ fOP} n ¥ {OP] n #|1OP| n " OP| n ¥ |OP| n # |OP| n ¥ |OP) n LA Keld #|OP] n #|lor| n ? NV BDt ZC
7pc M a4 afes|3[2|ef2|2 |43 |[79]a]3]er| 6] 28752712 Y 'Y
AND | () 4323 2}290212}30}4]3 ¥laj3|n]el2{3]s5|2)ja]4]|z2 PS
AS L oAl 2 OE| 6| 3]oefs |2 [A 6] 6|2 [(X]
BCC (2) 90 2
3CS (2} BO 2
BEQ (2) FO 2
Bt T 2| a | 3faaf3]2 M7 Mo °
BMI (2) 30 2
BNE (2) 00 2
8P L (2) 10 2
BRK 00 7 i 1 ¥
BVC |2 50 2
BVS 2) 70 2
cLc 812 {1 0
Cto o8| 2 [0
[s8] 2 {1 5
cLv B8l 2| o
C mpP Dy 4 3 [C5(3 2 1C9| 2 2 |DD| 4 3 09| 4 I fjcrt e 2D 5 2 |05| 4 2) o0
cPX EC) 4 3 | E4 3 2 [EO| 2 2 L] o e
cPyY CCla | 3)cal3l2}col2]2 [(X
DEC CE| 6 I |Co| s 2 o3 7 3 D6 |46 2 ° °
DEX cal 2 [. .
DEY 88 | 2) L] []
EOR |1 a4 |3 jas|3]2jaf22{s50}a]3s olajalale|2]|s]5]2]55]|a]2 ° °
INC e |o[3]e0] 5|2 fE]l7]3 F6lo |2 ° °
I'N X B 21 B
0
INY |2 : :
JMP ac| 3| 3 6| s | 3
JSR 20|63
LD A (1) AD| 4 1 31A5!/ 3|2 A0 2| 2180] 4] 3 Belal3ja]le]l 2] |5 2ie5]al2 [
LD X m AE| 4 | 3 [A6l 3 [2 A2 2] 2 8| 4 | 3 6] 412 |®
LDY) AC| a4 | 3 |Aaj 3|2]A| 2| 2|8BCfa4a]3 Ba| a4 | 2 °
LSR aa | 2 € |6 |3 14| 5|2 e 713 6|6 |2 0
NO P EA] 2 |1
ORA 0D | 4 31053 2 04 2 2 11D] 4 3 19| 4 3 J01] 6 2 [n 5 2 151 4 2 [o
PHA a8 1 3 |1
PHP 08| 3 |1
PLA 8 | a | ° [
PLP 2814 eceeccece
RO L 2A | 2 €| 61 3252 ¥ 713 36|62 [(X
R OR A | 2 66 61 36| 5] 2 ‘| 7] 3 761 6 | 2 o)
RT) gg g ; [RN N WY
RTS FOla]3 e F1
SBC m D 4| 3]es| 3|29 2|2(Ffm| a3 9 6l S 2 Fsfaeg2 (X}
SEC 38 2 1
SED Bl2 1
SEI 782 |1]
STA 8D | 4 | 3 |85 2 s 3f{wjs|3|8fjef2|an]ese]|2fe]a]2
ST X 8 | 4 | 3 [86] 2 9 | 4|2
sSTY 8C | 4| 3 [Ba] 2 94) a | 2
TAX anl 2 | . [
TAY a8l 2 | o °
TS X Bal 2 |1 ° .
TXA sa} 2 |1 e .
TXS oAl 2 |1
TYA 98 12 |1 ® °
(1) Add 110 n if crossing page boundary (2) Add 2ton if branch within page
Add 3o n f branch to another page
ADDRESS MEMORY ADDRESS MEMORY
I B]
ADH | ADL | MNEMONIC | OP CODE LOW MEMORY ADH ADL || MNEMONIC | 0P CODE LOW MEMORY
1] E @==== SPAFTER IRQ OR NMI| [} 1] E | M===—= SP AFTER JSR BUT BEFORE
° vV /// BUT BEFORE RTI :V//// | RETURN (RTS)
'] 1] F STATUS 00 ') 1 [] F PCL 02
o 11 e PCL (% @ 1|1t o /PCH 83 |~ SP BEFORE JSR AND AFTER
/ / RETURN (RTS) FROM
o 1|1 pCH, 03 «——— SP BEFORE I1RQ OR NMI o |1 | SUBROUTINE
/ STACK AND AFTER RT) STACK |
e 1|1 2 / '/
J it 4 4 A L
L L L 4 PC— T T T T b
T’ T T T e 3|0 o J s R 20 JUMP TO SUBROUTINE
PC e e 1|0 o | <«—— PC AT TIME OR IRQ OR e 3|0 1 A DL [
i NMI THiS INSTRUCTION
—— 3]e WILL COMPLETE BEFORE e 3|0 2 A D H 04
H INTERRUPT 1S SERVICED
e 3o 2 | €~ PC AFTER ATI 0 3|e 3 RETURN FROM SUBROUTINE TO
! THIS LOCATION
|
I
-2 4{0 5 INTERRUPT SERVICE
: MAIN BODY L 4 A 4 4
e 4|0 6 . I T
e 4]0 5 . SUBROUTINE MAIN
] a '] 7 RTI RETURN FROM BODY
INTERRUPT] 4 ° 6 .
e 4|0 7 .
EF|F A ADL e 4|0 8 R T S 60
} M1 VECTOR RETURN FROM SUBROUTINE
F F|F 8 ADH
F F|F C ADL }
RES VECTOR
F F|F D ADH
Lalr ¢f|F € ADL [}
} tRQ VECTOR
F F|F F ADH [
HIGH MEMORY HIGH MEMORY

46

FIG 1 IRQ,NMI, RTI. BRK OPERATION

FIG. 2 JSR, RTS, OPERATION

REGISTER SECTION

CONTROL SECTION

—_ VECTOR ADDRESSES :
- 9 [] RES TRQ NMI —
Af] INDE X
REGISTER w0l 2] 6 FUNCTION LOW PART JHIGH PART
Y - — —
10 il NM I FFFA FFFB
Al INTERRUPT — phile —
LOGIC RES FFFC FFFD
1] - INDEX = i
A2 3§ REGISTER C:> ; ‘ ; TRQ FFFE FFF
x , X
2y = a 7
Ay 2 = SYNC
o
al 2 _ 2l STACK POINT [——ROY
Alw— z REGISTER le=——5 0.
» « \J (s
A5 e @ s 7 0
(=] =
Ny slofi|z]c] p-recisTER
2 A —Narmmmeric (vIv] fefofiizfc] e-recisten
15 N—V [R
A =] LOGIC UNIT CARRY 1= TRVE
16 (ALU) INSTRUCTION ZERO 1 = RESULT ZERO
A7 DECODE L (RQDISABLE 1= DISABLE
l————— DECIMAL MODE 1= TRUE
ADDRESS J — L BRK COMMAND 1= BRK
8US COMULATOR L M OVERFLOW 1:=TRUE
ACCUMULA
17 — > = 3
A8 z A H NEGATIVE 1= NEG
<
18 -
Ase g Al PROGRAM : TIMING
x COUNTER CONTROL
19 [v (Low) i
A-—] _ z { ™~))
z A Al PROGRAM
20 3 (COUNTER
Al - 1, Al V__thisH) PROCESSOR cock L7
> kL,:::> STATUS
] ® - . REGIPSTER GENERATOR [CLOCK INPUT(#0 IN)
» 4 INPUT DATA
(-
” g \| LATCH I L—3;—>010UT
A=) o ({ oL) S 02007
2 | R/ W
24
A1 (=
DATA BUS <: INSTRUCTION
Atseld | BUFFER REGISTER
ERERE] [%t
33,
LEGEND 5 gt:
ﬁ‘?-eanuns ~:>>D2
9: D3 { DATA
5™ 04 [BUS
| =1 BIT LINE 205
Se>06
D7
ASCH CHARACTER SET (7-81T CODE)
7 [
a1} ACCUMULATOR A mMsD | @ 1 2 3 a 5 6 7
7 '] LsD 000 |001]010|Q11[(100 1@ [1108]1 11
L L T
[j_: INDEX REGISTER Y 0 |0000| NUL | DLE sp [} @ P P
7]
1 leee1| son | oct |
. - . 2 (010} sTx | bc2 2 B R b '
[Pen I oL] PROGRAM COUNTER “pC" 3 [@eo11] ETX | DC3 | 3 c s c s
5 ° 4 |0100| EOT | DCa | s 4 [T d t
S STACK POINTER s 5 (0101] ENG | NAK | % 5 E U e u
7 [} 6 |0110] Ack | SYN | & 6 F v 1 v
N Blpf1|Z]C PROCESSOR STATUS REG P 7 |®111]| BEL ETB ' 7 G w 9 w
8 |1000] 8BS CAN | 8 H x h x
9 |1001| HT EM) 9 | % i v
CARRY 1. TRUE A [1010] LF suB . J z J 2
ZERO 1 - RESULT ZERO B (10131 VT | ESC | ¢ K t k
L - IRQ DISABLE 1- DISABLE C [1100) FF Fs < L ' ' !
L+~ DECIMALMODE 1- TRUE D |1101|{CcR | Gs = M | m
———»> BRK COMMAND E [1110] so RS . E N ' n
Fltiir] s Vs / ? o o | DEL
b= OVERFLOW 1-TRUE
> NEGATIVE 1. NEG.

47

INSTRUCTION SET — ALPHABETIC SEQUENCE

ADC Add Memory to Accumulator with Carry DEC Decrement Memory by One PHA Push Accumulator on Stack
AND "AND" Memory with Accumulator DEX Decrement Index X by One PHP Push Processor Status on Stack
ASL Shift left One Bit (Memory or Accumulator) DEY Decrement index Y by One PLA Pull Accumulator from Stack

PLP Pull Processor Status from Stack
BCC Branch on Carry Clear EOR “Exclusive-or’” Memory with Accumulator
BCS Branch on Carry Set ROL Rotate One Bit Left (Memory or Accumulator)
BEQ Branch on Result Zero INC Increment Memory by One ROR Rotate One Bit Right (Memory or Accumulator)
BIT Test Bits in Memory with Accumulator INX Increment index X by One RTI Return from Interrupt
BMI Branch on Result Minus INY Increment Index Y by One RTS Return from Subroutine
BNE Branch on Result not Zero
BPL Branch on Result Plus JMP Zump to New Location SBC Subtract Memory from Accumulator with Borrow
BRK Force Break ’ JSR Jump to New Location Saving Return Address SEC Set Carry Flag
BVC Branch on Overflow Clear SED Set Decmal Mode
BVS Branch or, Overflow Set LDA Load Accumulator with Memory SEI Set Interrupt Disable Status

LDX Load Index X with Memory STA Store Accumulator in Memory

CLC Clear Carry Fiag LDY Load Index Y with Memory STX Store Index X in Memory
CLD Clear Decimal Mode LSR Shift One Bit Right (Memory or Accumulator) STY Store Index Y in Memory
CLI Clear Interrupt Disable Bit
CLV Clear Overflow Flag NOP No Operation TAX Transfer Accumulator to Index X
CMP Compare Memory and Accumulator TAY Transfer Accumulator to Index Y
CPX Compare Memory and Index X ORA “OR Memory with Accumulator TSX Transfer Stack Pointer to index X
CPY Compare Memory and index Y TXA Transfer index X to Accumulator

TXS Transfer Index X to Stack Pointer
TYA Transfer Index Y to Accumuiator

ADDRESSING MODES

ACCUMULATOR ADDRESSING — This form of addressing is represented with a one byte instruction, implying an operation
on the accumulator.

IMMEDIATE ADDRESSING — In immediate addressing, the operand is contained in the second byte of the instruction, with
no further memory addressing required.

ABSOLUTE ADDRESSING — In absolute addressing, the second byte of the instruction specifies the eight low order bits of
the effective address while the third byte specifies the eight high order bits. Thus, the absolute addressing mode allows
access to the entire 65K bytes of addressable memory.

ZERO PAGE ADDRESSING — The zero page instructions allow for shorter code and execution times by only fetching the
second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in
significant increase in code efficiency.

INDEXED ZERO PAGE ADDRESSING — (X, Y indexing) — This form of addressing is used in conjunction with the index
register and is referred to as “Zero Page, X"’ or ““Zero Page, Y". The effective address is calculated by adding the second
byte to the contents of the index register. Since this is a form of ‘“Zero Page” addressing, the content of the second byte
references a location in page zero. Additionally due to the ““Zero Page’ addressing nature of this mode, no carry is added
to the high order 8 bits of memory and crossing of page boundaries does not occur.

INDEXED ABSOLUTE ADDRESSING — (X, Y indexing) — This form of addressing is used in conjunction with X and Y index
register and is referred to as “‘Absolute, X", and “‘Absolute, Y. The effective address is formed by adding the contents of X
or Y to the address contained in the second and third bytes of the instruction. This mode allows the index register to
contain the index or count value and the instruction to contain the base address. This type of indexing allows any location
referencing and the index to modify multiple fields resulting in reduced coding and execution time.

IMPLIED ADDRESSING — In the implied addressing mode, the address containing the operand is implicitly stated in the
operation code of the instruction.

RELATIVE ADDRESSING — Relative addressing is used only with branch instructions and establishes a destination
for the conditional branch.
The second byte of the instruction becomes the operand which is an “offset” added to the contents of the lower eight bits
or: the program ctounter when the counter is set at the next instruction. The range of the offset is — 128to + 127 bytes from
the next instruction.

INDEXED INDIRECT ADDRESSING — In indexed indirect addressing (referred to as (Indirect,X)z, the second byte of the
instruction is added to the contents of the X index register, discarding the carry. The result of this addition points to a
memory location on page zero whose contents is the low order eight bits of the effective address. Both memory locations
specifying the high and low order bytes of the effective address must be in page zero.

INDIRECT INDEXED ADDRESSING — In indirect indexed addressing (referred to as (Indirect),Y), the second byte of the
instruction points to a memory location in page zero. The contents of this memory location is added to the contents of the
Y index register, the result being the low order eight bits of the effective address. The carry from this addition is added to
the contents of the next page zero memory location, the result being the high order eight bits of the effective address.

ABSOLUTE INDIRECT — The second byte of the instruction contains the low order eight bits of a memory location. The
high order eight bits of that memory location is contained in the third byte of the instruction. The contents of the fully
specified memory location is the low order byte of the effective address. The next memory location contains the high order
byte of the effective address which is loaded into the sixteen bits of the program counter.

(COMPUKIT UKI1O1 Price List

£219.00 + VAT
£269.00 + VAT

COMPUKIT UK 101 In Kit form
COMPUKIT UK 101 Fully assembled

SPARE PARTS
P.C.B.
Manual (construction and Software)

Keyboard (complete, all switches and Keytops)

Replacement Keytops
Keyswitches

ROM (Basic) 4 chips
Monitor (2K) chip
Character generator

TTL chip-set (everything included except processor,

memory and ACIA)
UHF Modulator UM 1233 (8MHz Bandwidth)
Socket set (complete)

INDIVIDUAL SOCKETS
40 pin socket
24 pin socket
18 pin socket
16 pin socket
14 pin socket
8 pin socket
Crystal (8MHz)
3 Amp Regulator LM323K
Heat Sink
Electrolytic capacitor 3300 mfd 40v
3 Amp diode

Resistors, capacitors and small diodes pack
(these parts are not sold separately)

6502 processor

6850 ACIA

2114 Memory chips

Fuse Holder

Fuse 2.5 Amp
Transformer

Colour Add-On Board
RAM/I/O Expansion Board

55.00
7.90
39.50
.25p
.60p
40.00
10.00
12.50

24.50
4.90
10.00

.45p
.35p
.25p
.20p
.18p
A2p
2.80
4.90
.65p
.45p
.25p
5.90

7.90

4.50

8 For 49.00
.10p

.06p

8.90

T.B.A.

T.B.A.

each
each

each
each

each
each
each
each
each
each
each
each
each
each
each

each
each

each
each

(Oct.)
(Nov.)

